ANALYSIS ON THE INFLUENCE OF VARIOUS SUBSTANCES ON SELECTIVE ACTIVATION OF Ca²⁺-DEPENDENT NO-SYNTASE (REVIEW)
Abstract
The article presents information on the structure, classification and functions of NO-synthases. The main inhibitors of the enzyme, as well as their mechanisms of action, are considered. Among the substances activating the activity of the enzyme, special attention was paid to substances of nucleotide-peptide nature, using the example of a substance isolated from Saccharomyces cerevisiae race 14, it was found that the nucleotide preparation based on a substance isolated from Saccharomyces cerevisiae race 14. has a more pronounced activating action in comparison with T-activin, and helps to restore the functions of the enzyme in diseases such as diabetes.
About the Authors
E. S. KokarevaRussian Federation
V. V. Morozov
Russian Federation
Ya. M. Stanishevskiy
Russian Federation
M. A. Zhuravleva
Russian Federation
N. V. Nozdryukhina
Russian Federation
V. S. Orlova
Russian Federation
E. V. Orlova
Russian Federation
References
1. Lipton S. A., Choi J. B., Pan Zh. H. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993. V. 364. Р. 626-632.
2. Berdiev U. B., Kuznecov Ju. P., Kuklin P. G., Reutov V. P., Sheksheev Je. M. Simulation of the EPR spectra of paramagnetic blood centers on personal computers such as IBM PC / XT / AT. M, Institute of Chemical Physics, USSR Academy of Sciences. 1989. Р. 208.
3. Xie O. W., Cho H. J., Galaycay J., Mumford R. A., Swiderek K. K., Lee T. D. Science. Clonimg and characterization of inducible nitric oxide synthase from mouse macrophages. 1992. V. 256. P. 225-228.
4. Sessa W. C., Harrison J. K., Barber C. M., Zeng D. J. Molecular cloning and expresion of a cDNA encoding endothelial cell nitric oxide synthase. Biol. Chem., 1992. V. 267. P. 15274-15276.
5. Lowenstein G., Glatt C. S., Bredt D. S. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Snyder. Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 6711-6715.
6. McMillan K., Masters B.S.S. Prokaryotic expression of the heme- and flavin-binding domains of rat neuronal nitric oxide synthase as distinct polypeptides: identification of the heme-bindingproximale thiolate ligand as Cisteine-415 / Biochemistry. 1995. V. 34. P. 3686-3693.
7. Wang J., Shin W. S., Kawaguchi H., Inukai M., Kato M., Sakamoto A. Contribution of sustained Ca2+-elevation for NO production in endothelial cells and subsequent modulation of Ca2+ transient in vascular smooth muscle cells in coculture / J.B.C., 1996. V. 271. P. 5647-5651.
8. Sheta E. A., McMillan K., Mosters B. S. S. Evidence of a bidomen structure of constitutive cerebellar nitric oxide synthase / J.Biol.Chem., 1994. V. 269. P. 15147-15153.
9. Ghosh D. K., Stuehr D. I. Macrophage NO synthase: characterisation of isolated oxigenase and reductase domains reveals a head-tohead subunit interaction / D. K. Ghosh, D. I. Stuehr. Biochemistry, 1995. V. 34. P. 801-807.
10. Rousseau D. L., Einstein A. Substrate-ligand interactions in nitric oxide synthase / Microsomes and drug oxidations N-Y Acad. Press, 1996.
11. Baserga R., Peruzzi F., Reiss K. The IGF-1 receptor in cancer biology / J. Cancer. 2003. V. 107. № 6. P. 873-877.
12. Cho H. J., Xie O. W., Galaycay J., Mumfor R. A. Calmodulin is a subunin of nitric oxide synthase from macrophage / J. Exp. Med., 1992. V. 176. P. 599-604.
13. Knowles R. G., Moncada S. Ca2+-mobilazing system can activate NOsynthase in endothelium-derieved coculture /Trends. Biochem. Sci., 1992. V. 17. P. 399-402.
14. Moncada S., Palmer R. M. J., Higgs E. A. Biothynthesis of nitric oxide from L-arginine: a pathway for the regulation of cell function and communication / Biochem. pharmacol., 1989. V. 38. P. 1709-1715.
15. Hevel J. M., White K. A., Marletta M. A. Purification of the inducible murine macrophage nitric oxide synthase / JBC. 1991. V. 266. P. 22789-22791.
16. Chen P., Tsai A., Wu K. K. Systeine 99 of endothelial nitric oxide synthase (NOS III) is for tetrahydrobiopterin-dependent NOS III stability and activity. / B.B.R.C. 1995. V. 215. P. 1119-1129.
17. Kwon N. S., Nathan C. F., Griffit O. W., Matthews D. E., Stuehr D. J. a-Citrulline Production from a-Arginine by Macrophage Nitric Oxide Synthase / JBC. 1990. V. 265. P. 13442-13445.
18. Stuehr D. J., Griffith O. W. Mammalian Nitric Oxide Synthases. / Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1999. V. 1411. P. 217-230.
19. Klatt P., Heinzel B., John M., Mayer B. P450 in vivo reduction by NOS and its participation in opiate utilizing processes / J. Biol. Chem. 1992. V. 267. P. 11374-11378.
20. Parshina S. S. Modern ideas about the biological effects of nitric oxide and its role in the development of cardiovascular disease. Cardiovascular therapy and prevention. T. 5. № 1. 2006. P. 88-94.
21. Narcissov Ja. R., Seraja I. P. Modern ideas about the biological role of nitric oxide. Successes of modern biology. 2002. № 3. P. 249-257.
22. Weinberger B., Laskin D. L., Heck D. E., Laskin J. D. The toxicology of inhaled nitric oxide. Toxicol Sci. 2001. № 59(1). P. 5-16.
23. Drexler H., Zeiher A. M., Meinzer K., Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine / Lancet. 1991. V. 338. P. 1546-1550.
24. Shi Y. Caspase activation: revisiting the induced proximity model / Cell. 2004. P. 855-856.
25. Orlova E. V., Orlova V. S., Marakhova A. I., Stanishevsky Ya. M. Complex nucleotide preparation from yeast Saccharomyces cerevisiae. Analytics. 2018. № 1 (38). Р. 64–68.
Review
For citations:
Kokareva E.S., Morozov V.V., Stanishevskiy Ya.M., Zhuravleva M.A., Nozdryukhina N.V., Orlova V.S., Orlova E.V. ANALYSIS ON THE INFLUENCE OF VARIOUS SUBSTANCES ON SELECTIVE ACTIVATION OF Ca²⁺-DEPENDENT NO-SYNTASE (REVIEW). Drug development & registration. 2018;(4):23-28. (In Russ.)