КЛЕТОЧНЫЕ НОСИТЕЛИ КАК СИСТЕМЫ ДОСТАВКИ ПРОТИВООПУХОЛЕВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ (ОБЗОР)
https://doi.org/10.33380/2305-2066-2019-8-1-43-57
Аннотация
Введение. Системы доставки лекарственных средств (СДЛС) определяются как системы, которые доставляют оптимальное количество лекарственного средства (ЛС) к целевой мишени, повышают эффективность лечения и уменьшают неблагоприятные последствия. Регулирование скорости высвобождения ЛС и доведение на конкретные ткани, где необходимы действующие вещества, являются основными целями СДЛС. Разработка систем для целенаправленной, органоспецифичной и контролируемой доставки лекарственных, профилактических и диагностических средств представляет собой в настоящее время актуальную область исследования для фармации и медицины. Особый интерес уделяется актуальной проблеме возрастания частоты проявлений побочных действий лекарственных препаратов (ЛП). Побочное действие ЛП, их малая эффективность нередко объясняются труднодоступностью препаратов непосредственно в мишень.
Текст. В настоящее время адресной доставкой химиотерапевтических веществ и СДЛС полностью изменяется тактика и подходы в медикаментозном лечении рака, позволяющие понижать побочные эффекты препарата и в целом увеличивать эффективность курса лечения. В настоящей работе приведено обобщение и систематизация сведений об адресных СДЛС противоопухолевого действия, описанных в научной литературе и используемых в фармации и медицине. Большинство рассмотренных в данном обзоре методов получения клеточных форм токсичных ЛС пока находится на стадии разработки, а некоторые методы постепенно находят практическое применение за рубежом в медицине и др. областях. Винкристин (VCR) и винбластин (VBL) являются наиболее широко используемыми и эффективными ЛС в химиотерапевтической практике. Несмотря на их эффективность против различных онкологических заболеваний, имеется ряд вредных побочных действий, которые ограничивают широкое применения этих препаратов.
Заключение. Существует возможность использования клеточных носителей (КН) в качестве системы доставки VCR и VBL. В научных публикациях пока отсутствуют данные о применении КН для инкапсулирования VCR и VBL. Поэтому актуальны исследования, посвящённые возможности применения КН для уменьшения побочных эффектов, улучшения эффективности и разработки лекарственных форм доставки VCR и VBL в патологические очаги. Данная тематика в настоящее время активно разрабатывается сотрудниками кафедры фармацевтической химии и фармацевтической технологии фармацевтического факультета Воронежского госуниверситета.
Об авторах
О. В. ТринееваРоссия
А. Д. Халахакун
Россия
А. И. Сливкин
Россия
Список литературы
1. Tsuchida K. Drug Delivery Systems for Cancer Treatment // Encyclopedia of Cancer / ed. M. Schwab. – Elsevier. 2002; 1: 1160–1162.
2. Полковникова Ю. А., Леньшин А. С., Середин П. В. Исследования по разработке наночастиц с афобазолом на основе пористого кремния. Биофармацевтический журнал. 2017; 9(2): 43-47.
3. Полковникова Ю. А., Леньшин А. С., Середин П. В., Минаков Д. А. Адсорбция и десорбция лекарственных препаратов на наночастицы кремния. Экология. Экономика. Информатика. Серия: Системный анализ и моделирование экономических и экологических систем. 2017; 1(2): 448–452.
4. Полковникова Ю. А. Использование пористого кремния в качестве перспективного носителя лекарственных веществ. Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2017; 4: 124–129.
5. Полковникова Ю. А. и др. Изучение процесса осаждения и высвобождения винпоцетина из системы адресной доставки лекарственного вещества на основе наночастиц пористого кремния. Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2016; 3: 120–125.
6. Постнов В. Н., Наумышева Е. Б., Королев Д. В., Галагудза М. М. Наноразмерные носители для доставки лекарственных препаратов. Биотехносфера. 2013; 6(30): 16–27.
7. Ивонин А. Г. и др. Направленный транспорт лекарственных препаратов: современное состояние вопроса и перспективы. Известия Коми научного центра УрО РАН. 2012; 1(9): 46–55.
8. Brannon-Peppas L., Blanchette J. O. Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews. 2004; 56: 1649–1659. DOI: 10.1016/j.addr.2012.09.033.
9. Feng N. et al. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency. International Journal of Nanomedicine. 2015; 10: 3081–3095. DOI: 10.2147/IJN.S79550.
10. Tiwari G. et al. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012; 2(1): 2–11. DOI: 10.4103/2230-973X.96920.
11. Liu Z. et al. Drug Delivery with Carbon Nanotubes for In vivo Cancer Treatment. Cancer Research. 2008; 68(16): 6652–6660. DOI: 10.1158/0008-5472.CAN-08-1468.
12. Farokhzad O. C., Langer R. Impact of Nanotechnology on Drug Delivery. ACS Nano. 2009; 3(1): 16–20. DOI: 10.1021/nn900002m.
13. Babu A. et al. Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer: Progress and Challenges. Journal of Nanomaterials. 2013; 2013: 11 p. DOI: 10.1155/2013/863951.
14. Tolcher A. W. et al. A phase 1 study of anti-TGFβ receptor type-II monoclonal antibody LY3022859 in patients with advanced solid tumors. Cancer chemotherapy and pharmacology. 2017; 65(3): 589– 595. DOI: 10.1007/s00280-017-3245-5.
15. Yamazaki N. et al. Phase 1 study of pembrolizumab (MK-3475; antiPD-1 monoclonal antibody) in Japanese patients with advanced solid tumors. Investigational New Drugs. 2016; 34(3): 347–354. DOI: 10.1007/s00280-016-3237-x.
16. Terheyden P., Becker J. C. New developments in the biology and the treatment of metastatic Merkel cell carcinoma. Current Opinion in Oncology. 2017; 1. DOI: 10.1097/CCO.0000000000000363.
17. Torchilin V. P. Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery. 2005; 4(2): 145–160. DOI: 10.1038/nrd1632.
18. Camacho K. M., Menegatti S., Mitragotri S. Low-molecular-weight polymer–drug conjugates for synergistic anticancer activity of camptothecin and doxorubicin combinations. Nanomedicine. 2016; 11(9): 1139–1151. DOI: 10.2217/nnm.16.33.
19. He R., Yin C. Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel. Acta Biomaterialia. 2017; February: 355–356. DOI: 10.1016/j.actbio.2017.02.012.
20. Park J. W. et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clinical cancer research: an official journal of the American Association for Cancer Research. 2002; 8(4): 1172–1181.
21. Yang T. et al. Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells. Pharmaceutical Research. 2007; 24(12): 2402–2411. DOI: 10.1007/s11095-007-9425-y.
22. Onishi H. et al. CD24 Modulates Chemosensitivity of MCF-7 Breast Cancer cells. Anticancer Research. 2017; 37(2): 561–566.
23. Weissferdt A. et al. Expression of PD-1 and PD-L1 in thymic epithelial neoplasms. Modern Pathology. 2017: 1–8. DOI: 10.1038/modpathol.2017.6. 2
24. Gardeck A. M., Sheehan J., Low W. C. Immune and viral therapies for malignant primary brain tumors. Expert Opinion on Biological Therapy. 2017; 17(4): 457–474. DOI: 10.1080/14712598.2017.1296132.
25. Foreman P. M. et al. Oncolytic Virotherapy for the Treatment of Malignant Glioma. Neurotherapeutics. 2017: 1–12. DOI: 10.1007/s13311-017-0516-0.
26. Lee Y., Thompson D. H. Stimuli-responsive liposomes for drug delivery. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology. 2017: 1450. DOI: 10.1002/wnan.1450.
27. Baryshnikova M. А., Baryshnikov A. Y. Immunoliposomes and their targets // Russian Journal of General Chemistry. 2013; 83(12): 2565-2570.
28. Karanth H., Murthy R. S. R. pH-Sensitive liposomes-principle and application in cancer therapy. Journal of Pharmacy and Pharmacology. 2007; 59(4): 469–483. DOI: 10.1211/jpp.59.4.0001.
29. Weissig V., Weissig V. Liposomes Methods and Protocols Volume 1: Pharmaceutical Nanocarriers: Methods in Molecular Biology. V. 605. Totowa, NJ: Humana Press, 2010; 559.
30. Bae Y. H., Park K. Targeted drug delivery to tumors: Myths, reality and possibility. Journal of Controlled Release. 2011; 153(3): 198–205.
31. Grobmyer S. R., Moudgil B. M., Grobmyer S. R., Moudgil B. M. Cancer Nanotechnology: Methods and Protocols: Methods in Molecular Biology. V. 624. Totowa, NJ: Humana Press, 2010; 396.
32. Prokop A. Intracellular Delivery: Fundamentals and Applications: Fundamental Biomedical Technologies. V. 5. Dordrecht: Springer Netherlands, 2011; 888.
33. De Villiers M. M. et al. Nanotechnology in Drug Delivery. New York, NY: Springer New York. 2009; 681.
34. Torchilin Vladimir P., de Villiers M. M., Aramwit P., Kwon G. S. Nanotechnology for Intracellular Delivery and Targeting. Nanotechnology in Drug Delivery. New York, NY: Springer New York, 2009: 313–346.
35. Alexis F. et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular pharmaceutics. 2008; 5(4): 505– 515. DOI: 10.1021/mp800051m.
36. Riggio C. et al. Nano-Oncology: Clinical Application for Cancer Therapy and Future Perspectives. Journal of Nanomaterials. 2011; 2011: 1–10. DOI: 10.1155/2011/164506.
37. Zhang P. et al. Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux. Biomaterials. 2011; 32(23): 5524–5533. DOI: 10.1016/j.biomaterials.2011.04.022.
38. Pan U. N. et al. Protein-Based Multifunctional Nanocarriers for Imaging, Photothermal Therapy, and Anticancer Drug Delivery. ACS applied materials & interfaces. 2016. DOI: 10.1021/acsami.6b06099.
39. Torchilin V. P. Multifunctional nanocarriers. Advanced Drug Delivery Reviews. 2006; 58(14): 1532–1555. DOI: 10.1016/j.addr.2006.09.009.
40. Барсуков Л. И. Липосомы. Соросовский образовательный журнал. 1998; 10: 2–9.
41. Ткаченко Б. И. Функции клеток крови. Гемостаз. Регуляция кроветворения основы транфузиология // Нормальная физиология человека. М.: Медицина. 2005: 309–345.
42. Швец В. И. и др. От липосом семидесятых к нанобиотехнологии XXI века. Российские Нанотехнологии. 2008; 3(11–12): 52–66.
43. Akbarzadeh A. et al. Liposome: classification, preparation, and applications. Nanoscale Research Letters. 2013; 8(1): 102. DOI: 10.1186/1556-276X-8-102.
44. Elbayoumi T. A., Torchilin V. P. Current Trends in Liposome Research. Liposomes Methodsand Protocols. V. 1: Pharmaceutical Nanocarriers / eds. V. Weissig, Department. Totowa, NJ: Humana Press Inc., 2010: 1–29.
45. Immordino M. L., Cattel L. Stealth Liposomes: Review of the Basic Science, Rationale and Clinical Applications, Existing and Potential Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. 2016; April: 297–315.
46. Cui J. et al. Development of Pegylated Liposomal Vincristine Using Novel Sulfobutyl Ether Cyclodextrin Gradient: Is Improved Drug Retention Sufficient to Surpass DSPE–PEG-Induced Drug Leakage. Journal of Pharmaceutical Sciences. 2011; 100(7): 2835–2848. DOI: 10.1002/jps.22496.
47. Silverman J. A., Deitcher S. R. (Vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemotherapy and Pharmacology. 2013; 71(3): 555–564. DOI: 10.1007/s00280-012-2042-4.
48. Vila-Caballer M. et al. A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment. Journal of Controlled Release. 2016; 238: 31-42. DOI: 10.1016/j.jconrel.2016.07.024.
49. Guo X., Szoka F. C. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjugate chemistry. 2001; 12(2): 291-300. DOI: 10.1021/bc000110v.
50. Zhang Y. Stealth Liposomes: the silent nanobombers. Preclinical Formulation – Trends in Bio/Pharmaceutical Industry. 2008; 4: 19–24.
51. Bawa R. FDA and Nano: Baby Steps, Regulatory Uncertainty and the Bumpy Road Ahead. Handbook of Clinical Nanomedicine Law, Business, Regulation, Safety, and Risk / eds. R. Bawa, G. F. Audette, B. E. Reese. – Boca Raton, FL: CRC Press, 2016: 339–384.
52. Singh Y. et al. Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release. 2017; 252: 28–49. DOI: 10.1016/j.jconrel.2017.03.008.
53. Brewer E., Coleman J., Lowman A. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery. Journal of Nanomaterials. 2011; 2011: 1–10. DOI: 10.1155/2011/408675.
54. Missailidis S. Anticancer-therapeutic. West Sussex: A John Wiley & Sons, Ltd., Publication. 2008: 410.
55. Fernandez-Fernandez A., Manchanda R., McGoron A. J. Theranostic applications of nanomaterials in cancer: Drug delivery, image-guided therapy, and multifunctional platforms. Applied Biochemistry and Biotechnology. 2011; 165: 1628-1651. DOI: 10.1007/s12010-011-9383-z
56. Ochubiojo M. et al. Nanotechnology in Drug Delivery. Recent Advances in Novel Drug Carrier Systems / ed. A. D. Sezer. – Rijeka, Croatia: InTech, 2012: 69–106. DOI: 10.5772/51384.
57. Niemirowicz K., Car H. Nanocarriers in modern drug delivery systems. Chemik. 2012; 66(8): 875–881.
58. Lim E. K. et al. Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale research letters. 2013; 8: 467. DOI: 10.1186/1556-276X-8-467.
59. Schäfer-Korting M. et al. Drug Delivery: Handbook of Experimental Pharmacology. Berlin, Heidelberg: Springer, 2010; 197: 506.
60. Peer D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology. 2007; 2(12): 751–760. DOI: 10.1038/ nnano.2007.387.
61. Perche F., Torchilin V. P. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. Journal of drug delivery. 2013; 2013: 32 p. DOI: 10.1155/2013/705265.
62. Vlerken L. E., Vyas T. K., Amiji M. M. Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery. Pharmaceutical Research. 2007; 24(8): 1405–1414. DOI: 10.1007/s11095-007-9284-6.
63. Slivkin A. I. et al. DNA-Based hybrid liquid crystalline nano organometallic composites for targeted drug delivery in neutron capture therapy. International Journal of Pharmacy and Pharmaceutical Sciences. 2017; 9(6): 74. DOI: 10.22159/ijpps.2017v9i6.17991.
64. Suh J. et al. PEGylation of nanoparticles improves their cytoplasmic transport. International journal of nanomedicine. 2007; 2(4): 735–741.
65. Acharya S., Sahoo S. K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced Drug Delivery Reviews. 2011; 63(3): 170–183. DOI: 10.1016/j.addr.2010.10.008
66. Dobson J. Magnetic nanoparticles for drug delivery. Drug Development Research. 2006; 67(1): 55–60. DOI: 10.1002/ddr.20067.
67. Wanga C. et al. Folic acid-conjugated liposomal vincristine for multidrug resistant cancer therapy. Asian Journal of Pharmaceutical Sciences. 2013; 8(2): 118–127. DOI: 10.1016/j.ajps.2013.07.015.
68. Chomoucka J. et al. Magnetic nanoparticles and targeted drug delivering. Pharmacological Research. 2010; 62(2): 144–149. DOI: 10.1016/j.phrs.2010.01.014.
69. Peer D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology. 2007; 2(12): 751–760. DOI: 10.1038/nnano.2007.387.
70. Avendano C., Menéndez J. C. Anticancer drugs targeting tubulin and Microtubules. Medicinal Chemistry of Anticancer Drugs. Elsevier, Boulevard. 2015: 359–387.
71. Ling G. et al. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. Journal of Controlled Release. 2010; 148(2): 241– 248. DOI: 10.1016/j.jconrel.2010.08.010.
72. Aboutaleb E. et al. Improved brain delivery of vincristine using dextran sulfate complex solid lipid nanoparticles: optimization and in vivo evaluation. Journal of biomedical materials research. Part A. 2014; 102(7): 2125–2136. DOI: 10.1002/jbm.a.34890.
73. Zucker D. et al. Characterization of PEGylated nanoliposomes coremotely loaded with topotecan and vincristine: Relating structure and pharmacokinetics to therapeutic efficacy. Journal of Controlled Release. 2012; 160(2): 281–289. DOI: 10.1016/j.jconrel.2011.10.003.
74. Leonetti C. et al. In vivo administration of liposomal vincristine sensitizes drug-resistant human solid tumors. International Journal of Cancer. 2004; 110(5): 767–774. DOI: 10.1002/ijc.20174.
75. Garratty G. Modulating the red cell membrane to produce universal/ stealth donor red cells suitable for transfusion. Vox sanguinis. 2008; 94(2): 87–95. DOI: 10.1111/j.1423-0410.2007.01003.x.
76. Wong M. Y., Chiu G. N. C. Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomedicine: Nanotechnology, Biology, and Medicine. 2011; 7(6): 834–840.
77. Noble C. O. et al. Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine. Cancer Chemotherapy and Pharmacology. 2009; 64(4): 741–751. DOI: 10.1007/s00280-008-0923-3.
78. Li X. et al. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells. Oncotarget. 2016; 7(17). Available at: www.impactjournals.com/oncotarget/ (accessed: 12.02.2016).
79. Boman N. L. Optimization of the retention properties of vincristine in liposomal systems. Biochimica et Biophysica Acta (BBA). Biomembranes. 1993; 1152(2): 253–258.
80. Dandamudi S., Campbell R. B. The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials. 2007; 28(31): 4673–4683. DOI: 10.1016/j.biomaterials.2007.07.024.
81. Zhang T. et al. A novel submicron emulsion system loaded with vincristine-oleic acid ion-pair complex with improved anticancer effect: In vitro and in vivo studies. International Journal of Nanomedicine. 2013; 8: 1185–1196. DOI: 10.2147/IJN.S41775.
82. Tan R. et al. Preparation of vincristine sulfate-loaded poly (butylcyanoacrylate) nanoparticles modified with pluronic F127 and evaluation of their lymphatic tissue targeting. Journal of drug targeting. 2014; 22(6): 509–517. DOI: 10.3109/1061186X.2014.897708.
83. Abid K. et al. Simultaneous determination of Vincristine and Vinblastine in Vinca rosea leaves by High Performance Thin Layer Chromatography. International journal of drug development and reaserch. 2013;5(3): 341–348.
84. Elbayoumi T. A., Torchilin V. P. Current Trends in Liposome Research // Liposomes Methodsand Protocols. Volume 1: Pharmaceutical Nanocarriers / ed. V. Weissig, Department. Totowa. NJ: Humana Press Inc. 2010: 1–29.
85. Sun Y. et al. Advances of blood cell-based drug delivery systems. European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences. 2017; 96: 115–128. DOI: 10.1016/j.ejps.2016.07.021.
86. Gupta A. et al. Cell Based Drug Delivery System through Resealed Erythrocyte – A Review. Blood Cells. 2010; 2(1): 23–30.
87. Zocchi E. et al. Encapsulation of doxorubicin in liver-targeted erythrocytes increases the therapeutic index of the drug in a murine metastatic model. Proceedings of the National Academy of Sciences of the United States of America. 1989; 86(6): 2040–2044.
88. Rossi L. et al. Engineering erythrocytes for the modulation of drugs and contrasting agents pharmacokinetics and biodistribution. Advanced Drug Delivery Reviews. 2016; 106: 73–87. DOI: 10.1016/j.addr.2016.05.008.
89. Godfrin Y. Erythrocytes as a drug delivery system. Innovations in Pharmaceutical Technology. 2009; 28: 60–62.
90. Magnani M., Rossi L. Approaches to erythrocyte-mediated drug delivery. Expert opinion on drug delivery. 2014; 11(5): 677–87. DOI: 10.1517/17425247.2014.889679.
91. Pierigè F. et al. Reengineering red blood cells for cellular therapeutics and diagnostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2017: 1454. DOI: 10.1002/wnan.1454.
92. Sah A. K. et al. Resealed erythrocytes: A Novel carrier for drug targeting. Journal of Chemical and Pharmaceutical Research. 2011; 3(2): 550–565.
93. Горбачёв В. И., Зарубин М. В. Экстракорпоральная фармакотерапия: реалии и перспективы. Available at: https://refdb.ru/look/2591162.html. (accessed: 10.1.2017).
94. Magnani M., Landes R. Erythrocyte Engineering for Drug Delivery and Targeting. Texas, U.S.A.: Eurekah.com, 2002: 151.
95. Xu P., Wang R., Wang X. J. Ouyang Recent advancements in erythrocytes, platelets, and albumin as delivery systems. OncoTargets and therapy. 2016; 9: 2873–2884. DOI: 10.2147/OTT.S104691.
96. Villa C. H. et al. Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Advanced Drug Delivery Reviews. 2016; 106: 88–103. DOI: 10.1016/j.addr.2016.02.007.
97. Wu Y. W., Goubran H., Seghatchian J., Burnouf T. Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine. Transfusion and Apheresis Science. 2016; 54(2): 309– 318. DOI: 10.1016/j.transci.2016.04.013.
98. Jadhav K. R. et al. Drug, enzyme and peptide delivery using erythrocytes as drug carrier. International Journal of Pharmaceutical Sciences Review and Research. 2012; 12(1): 79–88.
99. Villa C. H. et al. Erythrocytes as Carriers for Drug Delivery in Blood Transfusion and Beyond. Transfusion medicine reviews. 2017; 31(1): 26-35. DOI: 10.1016/j.tmrv.2016.08.004.
100. Ravilla S. Erythrocytes as Carrier for Drugs, Enzymes and Peptides. Journal of applied pharmaceutical science. 2012; 2(4): 166–176.
101. Википедия. Эритроциты. Википедия. Available at: https://ru.wikipedia.org/wiki/Эритроциты. (accessed: 15.03.2017).
102. Ross M. H., Pawlina W. Blood. A Text and Atlas: With Correlated Cell and Molecular Biology, 6th Edition / Ed. M. H. Ross, W. Pawlina. Wolter Kluwer, 2011: 270–313.
103. Muzykantov V. R. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert opinion on drug delivery. 2010; 7(4): 403-427. DOI: 10.1517/17425241003610633.
104. Pierigè F., Serafini S., Rossi L., Magnani M. Cell-based drug delivery. Advanced drug delivery reviews. 2008; 60(2): 286–295.
105. Kumar A., Verma M., Jha K. Resealed Erythrocytes as a Carrier for Drug Targeting: A Reviwe. Thepharmajournal. Com. 2011; 3(2): 550–565.
106. Patel R. P., Patel M. J., Patel N. F. An overview of resealed erythrocyte drug delivery. Journal of Pharmacy Research. 2009; 2(6): 1008–1012.
107. Laurencin M. et al. Human erythrocytes covered with magnetic coreshell nanoparticles for multimodal imaging. Advanced healthcare materials. 2013; 2(9): 1209–1212. DOI: 10.1002/adhm.201200384.
108. Zhiguang Wu et al. Turning erythrocytes into functional micromotors. ACS Nano. 2014; 8(12): 12041–12048. DOI: 10.1021/nn506200x.
109. Hamidi M. et al. Applications of carrier erythrocytes in delivery of biopharmaceuticals. Journal of Controlled Release. 2007; 118(2): 145– 160. DOI: 10.1016/j.jconrel.2006.06.032.
110. Patel P. D. et al. Drug loaded erythrocytes: as novel drug delivery system. Current pharmaceutical design. 2008; 14(1): 63–70. DOI: 10.2174/138161208783330772.
111. Jangde R. An Overview of Resealed Erythrocyte for Cancer Therapy. Asian J. Res. Pharm. Sci. 2011; 1(4): 83–92.
112. EryDelSPA. EryDex System. EryDelSPA. Available at: http://www.erydel.com/public/sitemin/Attest_study_start_up.pdf. (accessed: 10.02.2017).
113. Banerjee N., Singh S. Nanoerythrosomes – Dawn of A New Era in Carrier Mediated Targeted Drug Delivery. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2013; 4(2): 436–455.
114. Hu C. M. J., Fang R. H., Zhang L. Erythrocyte-inspired delivery systems. Advanced Healthcare Materials. 2012; 1(5): 537–547.
115. Nangare K. A., Powar S. D., Payghan S. A. Nanoerythrosomes: Engineered Erythrocytes as a Novel Carrier for the Targeted Drug Delivery. Asian Journal of Pharmaceutics. 2016; 10(3): 231–233.
116. Saurabh K. V. et al. Review Article Drug Targeting By Erythrocytes: A Carrier System. 2013; 2(2): 144–156.
117. Anselmo A. C. et al. Option on Red Blood Cells. ACS Nano. 2013; 7(12): 11129–11137. DOI: 10.1021/nn404853z.
118. Hu C.J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(27): 10980–10985. DOI: 10.1073/pnas.1106634108.
119. National Institute for Health Research (NIHR) Horizon Scanning Centre. Erythrocyte encapsulated asparaginase (GRASPA) for acute lymphoblastic leukaemia – second line. National Institute for Health Research (NIHR) Horizon Scanning Centre. 2015: 1–9.
120. Pierigè F. et al. Cytotoxic activity of 2-Fluoro-ara-AMP and 2-Fluoroara-AMP-loaded erythrocytes against human breast carcinoma cell lines. International journal of oncology. 2010; 37(1): 133–142. DOI: 10.3892/ijo_00000661.
Рецензия
Для цитирования:
Тринеева О.В., Халахакун А.Д., Сливкин А.И. КЛЕТОЧНЫЕ НОСИТЕЛИ КАК СИСТЕМЫ ДОСТАВКИ ПРОТИВООПУХОЛЕВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ (ОБЗОР). Разработка и регистрация лекарственных средств. 2019;8(1):43-57. https://doi.org/10.33380/2305-2066-2019-8-1-43-57
For citation:
Trineeva O.V., Halahakoon A.J., Slivkin A.I. CELL CARRIERS AS SYSTEMS OF DELIVERY OF ANTITUMOR DRUGS (REVIEW). Drug development & registration. 2019;8(1):43-57. (In Russ.) https://doi.org/10.33380/2305-2066-2019-8-1-43-57