Preview

Разработка и регистрация лекарственных средств

Расширенный поиск

КЛЕТОЧНЫЕ НОСИТЕЛИ КАК СИСТЕМЫ ДОСТАВКИ ПРОТИВООПУХОЛЕВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ (ОБЗОР)

https://doi.org/10.33380/2305-2066-2019-8-1-43-57

Полный текст:

Аннотация

Введение. Системы доставки лекарственных средств (СДЛС) определяются как системы, которые доставляют оптимальное количество лекарственного средства (ЛС) к целевой мишени, повышают эффективность лечения и уменьшают неблагоприятные последствия. Регулирование скорости высвобождения ЛС и доведение на конкретные ткани, где необходимы действующие вещества, являются основными целями СДЛС. Разработка систем для целенаправленной, органоспецифичной и контролируемой доставки лекарственных, профилактических и диагностических средств представляет собой в настоящее время актуальную область исследования для фармации и медицины. Особый интерес уделяется актуальной проблеме возрастания частоты проявлений побочных действий лекарственных препаратов (ЛП). Побочное действие ЛП, их малая эффективность нередко объясняются труднодоступностью препаратов непосредственно в мишень.

Текст. В настоящее время адресной доставкой химиотерапевтических веществ и СДЛС полностью изменяется тактика и подходы в медикаментозном лечении рака, позволяющие понижать побочные эффекты препарата и в целом увеличивать эффективность курса лечения. В настоящей работе приведено обобщение и систематизация сведений об адресных СДЛС противоопухолевого действия, описанных в научной литературе и используемых в фармации и медицине. Большинство рассмотренных в данном обзоре методов получения клеточных форм токсичных ЛС пока находится на стадии разработки, а некоторые методы постепенно находят практическое применение за рубежом в медицине и др. областях. Винкристин (VCR) и винбластин (VBL) являются наиболее широко используемыми и эффективными ЛС в химиотерапевтической практике. Несмотря на их эффективность против различных онкологических заболеваний, имеется ряд вредных побочных действий, которые ограничивают широкое применения этих препаратов.

Заключение. Существует возможность использования клеточных носителей (КН) в качестве системы доставки VCR и VBL. В научных публикациях пока отсутствуют данные о применении КН для инкапсулирования VCR и VBL. Поэтому актуальны исследования, посвящённые возможности применения КН для уменьшения побочных эффектов, улучшения эффективности и разработки лекарственных форм доставки VCR и VBL в патологические очаги. Данная тематика в настоящее время активно разрабатывается сотрудниками кафедры фармацевтической химии и фармацевтической технологии фармацевтического факультета Воронежского госуниверситета.

Об авторах

О. В. Тринеева
ФГБОУ ВО «Воронежский государственный университет»
Россия


А. Д. Халахакун
ФГБОУ ВО «Воронежский государственный университет»
Россия


А. И. Сливкин
ФГБОУ ВО «Воронежский государственный университет»
Россия


Список литературы

1. Tsuchida K. Drug Delivery Systems for Cancer Treatment // Encyclopedia of Cancer / ed. M. Schwab. – Elsevier. 2002; 1: 1160–1162.

2. Полковникова Ю. А., Леньшин А. С., Середин П. В. Исследования по разработке наночастиц с афобазолом на основе пористого кремния. Биофармацевтический журнал. 2017; 9(2): 43-47.

3. Полковникова Ю. А., Леньшин А. С., Середин П. В., Минаков Д. А. Адсорбция и десорбция лекарственных препаратов на наночастицы кремния. Экология. Экономика. Информатика. Серия: Системный анализ и моделирование экономических и экологических систем. 2017; 1(2): 448–452.

4. Полковникова Ю. А. Использование пористого кремния в качестве перспективного носителя лекарственных веществ. Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2017; 4: 124–129.

5. Полковникова Ю. А. и др. Изучение процесса осаждения и высвобождения винпоцетина из системы адресной доставки лекарственного вещества на основе наночастиц пористого кремния. Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2016; 3: 120–125.

6. Постнов В. Н., Наумышева Е. Б., Королев Д. В., Галагудза М. М. Наноразмерные носители для доставки лекарственных препаратов. Биотехносфера. 2013; 6(30): 16–27.

7. Ивонин А. Г. и др. Направленный транспорт лекарственных препаратов: современное состояние вопроса и перспективы. Известия Коми научного центра УрО РАН. 2012; 1(9): 46–55.

8. Brannon-Peppas L., Blanchette J. O. Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews. 2004; 56: 1649–1659. DOI: 10.1016/j.addr.2012.09.033.

9. Feng N. et al. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency. International Journal of Nanomedicine. 2015; 10: 3081–3095. DOI: 10.2147/IJN.S79550.

10. Tiwari G. et al. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012; 2(1): 2–11. DOI: 10.4103/2230-973X.96920.

11. Liu Z. et al. Drug Delivery with Carbon Nanotubes for In vivo Cancer Treatment. Cancer Research. 2008; 68(16): 6652–6660. DOI: 10.1158/0008-5472.CAN-08-1468.

12. Farokhzad O. C., Langer R. Impact of Nanotechnology on Drug Delivery. ACS Nano. 2009; 3(1): 16–20. DOI: 10.1021/nn900002m.

13. Babu A. et al. Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer: Progress and Challenges. Journal of Nanomaterials. 2013; 2013: 11 p. DOI: 10.1155/2013/863951.

14. Tolcher A. W. et al. A phase 1 study of anti-TGFβ receptor type-II monoclonal antibody LY3022859 in patients with advanced solid tumors. Cancer chemotherapy and pharmacology. 2017; 65(3): 589– 595. DOI: 10.1007/s00280-017-3245-5.

15. Yamazaki N. et al. Phase 1 study of pembrolizumab (MK-3475; antiPD-1 monoclonal antibody) in Japanese patients with advanced solid tumors. Investigational New Drugs. 2016; 34(3): 347–354. DOI: 10.1007/s00280-016-3237-x.

16. Terheyden P., Becker J. C. New developments in the biology and the treatment of metastatic Merkel cell carcinoma. Current Opinion in Oncology. 2017; 1. DOI: 10.1097/CCO.0000000000000363.

17. Torchilin V. P. Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery. 2005; 4(2): 145–160. DOI: 10.1038/nrd1632.

18. Camacho K. M., Menegatti S., Mitragotri S. Low-molecular-weight polymer–drug conjugates for synergistic anticancer activity of camptothecin and doxorubicin combinations. Nanomedicine. 2016; 11(9): 1139–1151. DOI: 10.2217/nnm.16.33.

19. He R., Yin C. Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel. Acta Biomaterialia. 2017; February: 355–356. DOI: 10.1016/j.actbio.2017.02.012.

20. Park J. W. et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clinical cancer research: an official journal of the American Association for Cancer Research. 2002; 8(4): 1172–1181.

21. Yang T. et al. Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells. Pharmaceutical Research. 2007; 24(12): 2402–2411. DOI: 10.1007/s11095-007-9425-y.

22. Onishi H. et al. CD24 Modulates Chemosensitivity of MCF-7 Breast Cancer cells. Anticancer Research. 2017; 37(2): 561–566.

23. Weissferdt A. et al. Expression of PD-1 and PD-L1 in thymic epithelial neoplasms. Modern Pathology. 2017: 1–8. DOI: 10.1038/modpathol.2017.6. 2

24. Gardeck A. M., Sheehan J., Low W. C. Immune and viral therapies for malignant primary brain tumors. Expert Opinion on Biological Therapy. 2017; 17(4): 457–474. DOI: 10.1080/14712598.2017.1296132.

25. Foreman P. M. et al. Oncolytic Virotherapy for the Treatment of Malignant Glioma. Neurotherapeutics. 2017: 1–12. DOI: 10.1007/s13311-017-0516-0.

26. Lee Y., Thompson D. H. Stimuli-responsive liposomes for drug delivery. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology. 2017: 1450. DOI: 10.1002/wnan.1450.

27. Baryshnikova M. А., Baryshnikov A. Y. Immunoliposomes and their targets // Russian Journal of General Chemistry. 2013; 83(12): 2565-2570.

28. Karanth H., Murthy R. S. R. pH-Sensitive liposomes-principle and application in cancer therapy. Journal of Pharmacy and Pharmacology. 2007; 59(4): 469–483. DOI: 10.1211/jpp.59.4.0001.

29. Weissig V., Weissig V. Liposomes Methods and Protocols Volume 1: Pharmaceutical Nanocarriers: Methods in Molecular Biology. V. 605. Totowa, NJ: Humana Press, 2010; 559.

30. Bae Y. H., Park K. Targeted drug delivery to tumors: Myths, reality and possibility. Journal of Controlled Release. 2011; 153(3): 198–205.

31. Grobmyer S. R., Moudgil B. M., Grobmyer S. R., Moudgil B. M. Cancer Nanotechnology: Methods and Protocols: Methods in Molecular Biology. V. 624. Totowa, NJ: Humana Press, 2010; 396.

32. Prokop A. Intracellular Delivery: Fundamentals and Applications: Fundamental Biomedical Technologies. V. 5. Dordrecht: Springer Netherlands, 2011; 888.

33. De Villiers M. M. et al. Nanotechnology in Drug Delivery. New York, NY: Springer New York. 2009; 681.

34. Torchilin Vladimir P., de Villiers M. M., Aramwit P., Kwon G. S. Nanotechnology for Intracellular Delivery and Targeting. Nanotechnology in Drug Delivery. New York, NY: Springer New York, 2009: 313–346.

35. Alexis F. et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular pharmaceutics. 2008; 5(4): 505– 515. DOI: 10.1021/mp800051m.

36. Riggio C. et al. Nano-Oncology: Clinical Application for Cancer Therapy and Future Perspectives. Journal of Nanomaterials. 2011; 2011: 1–10. DOI: 10.1155/2011/164506.

37. Zhang P. et al. Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux. Biomaterials. 2011; 32(23): 5524–5533. DOI: 10.1016/j.biomaterials.2011.04.022.

38. Pan U. N. et al. Protein-Based Multifunctional Nanocarriers for Imaging, Photothermal Therapy, and Anticancer Drug Delivery. ACS applied materials & interfaces. 2016. DOI: 10.1021/acsami.6b06099.

39. Torchilin V. P. Multifunctional nanocarriers. Advanced Drug Delivery Reviews. 2006; 58(14): 1532–1555. DOI: 10.1016/j.addr.2006.09.009.

40. Барсуков Л. И. Липосомы. Соросовский образовательный журнал. 1998; 10: 2–9.

41. Ткаченко Б. И. Функции клеток крови. Гемостаз. Регуляция кроветворения основы транфузиология // Нормальная физиология человека. М.: Медицина. 2005: 309–345.

42. Швец В. И. и др. От липосом семидесятых к нанобиотехнологии XXI века. Российские Нанотехнологии. 2008; 3(11–12): 52–66.

43. Akbarzadeh A. et al. Liposome: classification, preparation, and applications. Nanoscale Research Letters. 2013; 8(1): 102. DOI: 10.1186/1556-276X-8-102.

44. Elbayoumi T. A., Torchilin V. P. Current Trends in Liposome Research. Liposomes Methodsand Protocols. V. 1: Pharmaceutical Nanocarriers / eds. V. Weissig, Department. Totowa, NJ: Humana Press Inc., 2010: 1–29.

45. Immordino M. L., Cattel L. Stealth Liposomes: Review of the Basic Science, Rationale and Clinical Applications, Existing and Potential Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. 2016; April: 297–315.

46. Cui J. et al. Development of Pegylated Liposomal Vincristine Using Novel Sulfobutyl Ether Cyclodextrin Gradient: Is Improved Drug Retention Sufficient to Surpass DSPE–PEG-Induced Drug Leakage. Journal of Pharmaceutical Sciences. 2011; 100(7): 2835–2848. DOI: 10.1002/jps.22496.

47. Silverman J. A., Deitcher S. R. (Vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemotherapy and Pharmacology. 2013; 71(3): 555–564. DOI: 10.1007/s00280-012-2042-4.

48. Vila-Caballer M. et al. A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment. Journal of Controlled Release. 2016; 238: 31-42. DOI: 10.1016/j.jconrel.2016.07.024.

49. Guo X., Szoka F. C. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjugate chemistry. 2001; 12(2): 291-300. DOI: 10.1021/bc000110v.

50. Zhang Y. Stealth Liposomes: the silent nanobombers. Preclinical Formulation – Trends in Bio/Pharmaceutical Industry. 2008; 4: 19–24.

51. Bawa R. FDA and Nano: Baby Steps, Regulatory Uncertainty and the Bumpy Road Ahead. Handbook of Clinical Nanomedicine Law, Business, Regulation, Safety, and Risk / eds. R. Bawa, G. F. Audette, B. E. Reese. – Boca Raton, FL: CRC Press, 2016: 339–384.

52. Singh Y. et al. Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release. 2017; 252: 28–49. DOI: 10.1016/j.jconrel.2017.03.008.

53. Brewer E., Coleman J., Lowman A. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery. Journal of Nanomaterials. 2011; 2011: 1–10. DOI: 10.1155/2011/408675.

54. Missailidis S. Anticancer-therapeutic. West Sussex: A John Wiley & Sons, Ltd., Publication. 2008: 410.

55. Fernandez-Fernandez A., Manchanda R., McGoron A. J. Theranostic applications of nanomaterials in cancer: Drug delivery, image-guided therapy, and multifunctional platforms. Applied Biochemistry and Biotechnology. 2011; 165: 1628-1651. DOI: 10.1007/s12010-011-9383-z

56. Ochubiojo M. et al. Nanotechnology in Drug Delivery. Recent Advances in Novel Drug Carrier Systems / ed. A. D. Sezer. – Rijeka, Croatia: InTech, 2012: 69–106. DOI: 10.5772/51384.

57. Niemirowicz K., Car H. Nanocarriers in modern drug delivery systems. Chemik. 2012; 66(8): 875–881.

58. Lim E. K. et al. Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale research letters. 2013; 8: 467. DOI: 10.1186/1556-276X-8-467.

59. Schäfer-Korting M. et al. Drug Delivery: Handbook of Experimental Pharmacology. Berlin, Heidelberg: Springer, 2010; 197: 506.

60. Peer D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology. 2007; 2(12): 751–760. DOI: 10.1038/ nnano.2007.387.

61. Perche F., Torchilin V. P. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. Journal of drug delivery. 2013; 2013: 32 p. DOI: 10.1155/2013/705265.

62. Vlerken L. E., Vyas T. K., Amiji M. M. Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery. Pharmaceutical Research. 2007; 24(8): 1405–1414. DOI: 10.1007/s11095-007-9284-6.

63. Slivkin A. I. et al. DNA-Based hybrid liquid crystalline nano organometallic composites for targeted drug delivery in neutron capture therapy. International Journal of Pharmacy and Pharmaceutical Sciences. 2017; 9(6): 74. DOI: 10.22159/ijpps.2017v9i6.17991.

64. Suh J. et al. PEGylation of nanoparticles improves their cytoplasmic transport. International journal of nanomedicine. 2007; 2(4): 735–741.

65. Acharya S., Sahoo S. K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced Drug Delivery Reviews. 2011; 63(3): 170–183. DOI: 10.1016/j.addr.2010.10.008

66. Dobson J. Magnetic nanoparticles for drug delivery. Drug Development Research. 2006; 67(1): 55–60. DOI: 10.1002/ddr.20067.

67. Wanga C. et al. Folic acid-conjugated liposomal vincristine for multidrug resistant cancer therapy. Asian Journal of Pharmaceutical Sciences. 2013; 8(2): 118–127. DOI: 10.1016/j.ajps.2013.07.015.

68. Chomoucka J. et al. Magnetic nanoparticles and targeted drug delivering. Pharmacological Research. 2010; 62(2): 144–149. DOI: 10.1016/j.phrs.2010.01.014.

69. Peer D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology. 2007; 2(12): 751–760. DOI: 10.1038/nnano.2007.387.

70. Avendano C., Menéndez J. C. Anticancer drugs targeting tubulin and Microtubules. Medicinal Chemistry of Anticancer Drugs. Elsevier, Boulevard. 2015: 359–387.

71. Ling G. et al. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. Journal of Controlled Release. 2010; 148(2): 241– 248. DOI: 10.1016/j.jconrel.2010.08.010.

72. Aboutaleb E. et al. Improved brain delivery of vincristine using dextran sulfate complex solid lipid nanoparticles: optimization and in vivo evaluation. Journal of biomedical materials research. Part A. 2014; 102(7): 2125–2136. DOI: 10.1002/jbm.a.34890.

73. Zucker D. et al. Characterization of PEGylated nanoliposomes coremotely loaded with topotecan and vincristine: Relating structure and pharmacokinetics to therapeutic efficacy. Journal of Controlled Release. 2012; 160(2): 281–289. DOI: 10.1016/j.jconrel.2011.10.003.

74. Leonetti C. et al. In vivo administration of liposomal vincristine sensitizes drug-resistant human solid tumors. International Journal of Cancer. 2004; 110(5): 767–774. DOI: 10.1002/ijc.20174.

75. Garratty G. Modulating the red cell membrane to produce universal/ stealth donor red cells suitable for transfusion. Vox sanguinis. 2008; 94(2): 87–95. DOI: 10.1111/j.1423-0410.2007.01003.x.

76. Wong M. Y., Chiu G. N. C. Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomedicine: Nanotechnology, Biology, and Medicine. 2011; 7(6): 834–840.

77. Noble C. O. et al. Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine. Cancer Chemotherapy and Pharmacology. 2009; 64(4): 741–751. DOI: 10.1007/s00280-008-0923-3.

78. Li X. et al. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells. Oncotarget. 2016; 7(17). Available at: www.impactjournals.com/oncotarget/ (accessed: 12.02.2016).

79. Boman N. L. Optimization of the retention properties of vincristine in liposomal systems. Biochimica et Biophysica Acta (BBA). Biomembranes. 1993; 1152(2): 253–258.

80. Dandamudi S., Campbell R. B. The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials. 2007; 28(31): 4673–4683. DOI: 10.1016/j.biomaterials.2007.07.024.

81. Zhang T. et al. A novel submicron emulsion system loaded with vincristine-oleic acid ion-pair complex with improved anticancer effect: In vitro and in vivo studies. International Journal of Nanomedicine. 2013; 8: 1185–1196. DOI: 10.2147/IJN.S41775.

82. Tan R. et al. Preparation of vincristine sulfate-loaded poly (butylcyanoacrylate) nanoparticles modified with pluronic F127 and evaluation of their lymphatic tissue targeting. Journal of drug targeting. 2014; 22(6): 509–517. DOI: 10.3109/1061186X.2014.897708.

83. Abid K. et al. Simultaneous determination of Vincristine and Vinblastine in Vinca rosea leaves by High Performance Thin Layer Chromatography. International journal of drug development and reaserch. 2013;5(3): 341–348.

84. Elbayoumi T. A., Torchilin V. P. Current Trends in Liposome Research // Liposomes Methodsand Protocols. Volume 1: Pharmaceutical Nanocarriers / ed. V. Weissig, Department. Totowa. NJ: Humana Press Inc. 2010: 1–29.

85. Sun Y. et al. Advances of blood cell-based drug delivery systems. European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences. 2017; 96: 115–128. DOI: 10.1016/j.ejps.2016.07.021.

86. Gupta A. et al. Cell Based Drug Delivery System through Resealed Erythrocyte – A Review. Blood Cells. 2010; 2(1): 23–30.

87. Zocchi E. et al. Encapsulation of doxorubicin in liver-targeted erythrocytes increases the therapeutic index of the drug in a murine metastatic model. Proceedings of the National Academy of Sciences of the United States of America. 1989; 86(6): 2040–2044.

88. Rossi L. et al. Engineering erythrocytes for the modulation of drugs and contrasting agents pharmacokinetics and biodistribution. Advanced Drug Delivery Reviews. 2016; 106: 73–87. DOI: 10.1016/j.addr.2016.05.008.

89. Godfrin Y. Erythrocytes as a drug delivery system. Innovations in Pharmaceutical Technology. 2009; 28: 60–62.

90. Magnani M., Rossi L. Approaches to erythrocyte-mediated drug delivery. Expert opinion on drug delivery. 2014; 11(5): 677–87. DOI: 10.1517/17425247.2014.889679.

91. Pierigè F. et al. Reengineering red blood cells for cellular therapeutics and diagnostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2017: 1454. DOI: 10.1002/wnan.1454.

92. Sah A. K. et al. Resealed erythrocytes: A Novel carrier for drug targeting. Journal of Chemical and Pharmaceutical Research. 2011; 3(2): 550–565.

93. Горбачёв В. И., Зарубин М. В. Экстракорпоральная фармакотерапия: реалии и перспективы. Available at: https://refdb.ru/look/2591162.html. (accessed: 10.1.2017).

94. Magnani M., Landes R. Erythrocyte Engineering for Drug Delivery and Targeting. Texas, U.S.A.: Eurekah.com, 2002: 151.

95. Xu P., Wang R., Wang X. J. Ouyang Recent advancements in erythrocytes, platelets, and albumin as delivery systems. OncoTargets and therapy. 2016; 9: 2873–2884. DOI: 10.2147/OTT.S104691.

96. Villa C. H. et al. Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Advanced Drug Delivery Reviews. 2016; 106: 88–103. DOI: 10.1016/j.addr.2016.02.007.

97. Wu Y. W., Goubran H., Seghatchian J., Burnouf T. Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine. Transfusion and Apheresis Science. 2016; 54(2): 309– 318. DOI: 10.1016/j.transci.2016.04.013.

98. Jadhav K. R. et al. Drug, enzyme and peptide delivery using erythrocytes as drug carrier. International Journal of Pharmaceutical Sciences Review and Research. 2012; 12(1): 79–88.

99. Villa C. H. et al. Erythrocytes as Carriers for Drug Delivery in Blood Transfusion and Beyond. Transfusion medicine reviews. 2017; 31(1): 26-35. DOI: 10.1016/j.tmrv.2016.08.004.

100. Ravilla S. Erythrocytes as Carrier for Drugs, Enzymes and Peptides. Journal of applied pharmaceutical science. 2012; 2(4): 166–176.

101. Википедия. Эритроциты. Википедия. Available at: https://ru.wikipedia.org/wiki/Эритроциты. (accessed: 15.03.2017).

102. Ross M. H., Pawlina W. Blood. A Text and Atlas: With Correlated Cell and Molecular Biology, 6th Edition / Ed. M. H. Ross, W. Pawlina. Wolter Kluwer, 2011: 270–313.

103. Muzykantov V. R. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert opinion on drug delivery. 2010; 7(4): 403-427. DOI: 10.1517/17425241003610633.

104. Pierigè F., Serafini S., Rossi L., Magnani M. Cell-based drug delivery. Advanced drug delivery reviews. 2008; 60(2): 286–295.

105. Kumar A., Verma M., Jha K. Resealed Erythrocytes as a Carrier for Drug Targeting: A Reviwe. Thepharmajournal. Com. 2011; 3(2): 550–565.

106. Patel R. P., Patel M. J., Patel N. F. An overview of resealed erythrocyte drug delivery. Journal of Pharmacy Research. 2009; 2(6): 1008–1012.

107. Laurencin M. et al. Human erythrocytes covered with magnetic coreshell nanoparticles for multimodal imaging. Advanced healthcare materials. 2013; 2(9): 1209–1212. DOI: 10.1002/adhm.201200384.

108. Zhiguang Wu et al. Turning erythrocytes into functional micromotors. ACS Nano. 2014; 8(12): 12041–12048. DOI: 10.1021/nn506200x.

109. Hamidi M. et al. Applications of carrier erythrocytes in delivery of biopharmaceuticals. Journal of Controlled Release. 2007; 118(2): 145– 160. DOI: 10.1016/j.jconrel.2006.06.032.

110. Patel P. D. et al. Drug loaded erythrocytes: as novel drug delivery system. Current pharmaceutical design. 2008; 14(1): 63–70. DOI: 10.2174/138161208783330772.

111. Jangde R. An Overview of Resealed Erythrocyte for Cancer Therapy. Asian J. Res. Pharm. Sci. 2011; 1(4): 83–92.

112. EryDelSPA. EryDex System. EryDelSPA. Available at: http://www.erydel.com/public/sitemin/Attest_study_start_up.pdf. (accessed: 10.02.2017).

113. Banerjee N., Singh S. Nanoerythrosomes – Dawn of A New Era in Carrier Mediated Targeted Drug Delivery. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2013; 4(2): 436–455.

114. Hu C. M. J., Fang R. H., Zhang L. Erythrocyte-inspired delivery systems. Advanced Healthcare Materials. 2012; 1(5): 537–547.

115. Nangare K. A., Powar S. D., Payghan S. A. Nanoerythrosomes: Engineered Erythrocytes as a Novel Carrier for the Targeted Drug Delivery. Asian Journal of Pharmaceutics. 2016; 10(3): 231–233.

116. Saurabh K. V. et al. Review Article Drug Targeting By Erythrocytes: A Carrier System. 2013; 2(2): 144–156.

117. Anselmo A. C. et al. Option on Red Blood Cells. ACS Nano. 2013; 7(12): 11129–11137. DOI: 10.1021/nn404853z.

118. Hu C.J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(27): 10980–10985. DOI: 10.1073/pnas.1106634108.

119. National Institute for Health Research (NIHR) Horizon Scanning Centre. Erythrocyte encapsulated asparaginase (GRASPA) for acute lymphoblastic leukaemia – second line. National Institute for Health Research (NIHR) Horizon Scanning Centre. 2015: 1–9.

120. Pierigè F. et al. Cytotoxic activity of 2-Fluoro-ara-AMP and 2-Fluoroara-AMP-loaded erythrocytes against human breast carcinoma cell lines. International journal of oncology. 2010; 37(1): 133–142. DOI: 10.3892/ijo_00000661.


Рецензия

Для цитирования:


Тринеева О.В., Халахакун А.Д., Сливкин А.И. КЛЕТОЧНЫЕ НОСИТЕЛИ КАК СИСТЕМЫ ДОСТАВКИ ПРОТИВООПУХОЛЕВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ (ОБЗОР). Разработка и регистрация лекарственных средств. 2019;8(1):43-57. https://doi.org/10.33380/2305-2066-2019-8-1-43-57

For citation:


Trineeva O.V., Halahakoon A.J., Slivkin A.I. CELL CARRIERS AS SYSTEMS OF DELIVERY OF ANTITUMOR DRUGS (REVIEW). Drug development & registration. 2019;8(1):43-57. (In Russ.) https://doi.org/10.33380/2305-2066-2019-8-1-43-57

Просмотров: 1904


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)