Validation of Analytical Procedures: Graphic and Calculated Criteria for Assessment of Methods Linearity in Practice
https://doi.org/10.33380/2305-2066-2019-8-2-122-130
Abstract
Introduction. «Linearity» is one of the required characteristics when validating analytical procedures. The issues of the validation of linearity procedures are still relevant.
Aim. To consider the main graphical and calculated criteria for confirmation of the linearity of analytical procedures and their restrictions, as well as to give recommendations.
Materials and methods. Statistical calculations were performed using MS Excel. Experimental data were obtained by HPLC.
Results and discussion. The main criteria for proving/confirming the linearity of analytical procedures and their restrictions are considered in detail. It is shown that these criteria cannot always give a reliable assessment of the linearity of the procedure, the possible reasons for this are indicated and recommendations are given.
Conclusion. When validating the procedures, it is necessary to prove/confirm their linearity by using two, and, more reliably, three criteria, one of which must be the linearity of the plot of measured response (Y) vs concentration of the tested substance (C). On the other hand, we demonstrate here that a formal approach should not be used for the estimation of non-linearity of the procedure when using graphical and calculation criteria based on mathematical statistics, since they do not take into account the possibility of practical insignificance of small deviations from the linear dependence of Y on C.
About the Author
N. A. EpshteinRussian Federation
Researcher ID: A-7114-2019
References
1. ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1). ICH, 2005; 13.
2. United States Pharmacopoeia. <1225> Validation of compendial procedures. USP40–NF35. 2017; 1640–1646.
3. State Pharmacopoeia of the Russian Federation XIV edition, 2018, V.1; 276-288 (in Russ.).
4. Green J. М. А Practical Guide to Analytical Method Validation. Analytical Chemistry News & Features. 1996; 1: 305А-309А. https://doi.org/10.1021/ac961912f.
5. Epstein N. A. Evaluation of the suitability (validation) of HPLC techniques in pharmaceutical analysis (Review). Chemical Pharmaceutical Journal. 2004; 38 (4): 40–56. https://doi.org/10.1023/b:phac.0000038422.27193.6c
6. Ermer Y., Miller D.H. Mac B. Validation of methods in pharmaceutical analysis. Examples of best practices. M.: VIALEK. 2013; 512 (in Russ.).
7. Guide for enterprises of the pharmaceutical industry. Guidelines. Part I. Guidelines for the validation of methods for analyzing drugs. Ed. N. V. Yurgelya, A. L. Mladentseva, A. V. Burdeina i dr. M.: Publishing house «Sport and Culture – 2000». 2007; 5–92 (In Russ.).
8. Grizodub A. I. Standardized procedures for the validation of drug quality control methods. Khar’kov: Gosudarstvennoe predpriyatie «Ukrainskiy nauchnyy farmakopeynyy tsentr kachestva lekarstvennykh sredstv». 2016; 396 (in Russ.).
9. Massart D. L., Vandeginste B. G. M., Buydens L. M. C., De Jong S., Lewi P. J., Smeyers-Verbeke J. Straight Line Regression and Calibration, in: Handbook of Chemometrics and Qualimetrics: Part A, volume 20A of Data Handling in Science and Technology. Amsterdam, Netherlands: Elsevier. 1998: 171–230. https://doi.org/10.1016/S0922-3487(97)80038-X.
10. Vial J. and Jardy A. Taking into account both preparation and injection in HPLC linearity studies. J. Chromatogr. Sci.2000; 38:189–194.
11. Burke S. Regression and Calibration. LC-GC Europe Online Supplement statistics and data analysis. 2001: 13–18.
12. Kiser M. M., Dolan J. W. Selecting the Best Curve Fit. LC-GC North America. 2004; 22(2): 138–143.
13. Mark H., Workman J. Chemometrics in Spectroscopy. How to Test for Non-linearity. Spectroscopy. 2005; 20(9): 26–35.
14. Mark H., Workman J. Linearity in calibration: Other tests for nonlinearity // Spectroscopy. 2005; 20(4):38–39.
15. Scheilla Vitorino Carvalho de Souza, Junqueira R. G. A procedure to assess linearity by ordinary least squares method. Analytica Chimica Acta. 2005; 552(1-2): 25–35. https://doi.org/10.1016/j.aca.2005.07.043.
16. Mark H., Workman J. Chemometrics in Spectroscopy. Linearity in Calibration: Quantifying Nonlinearity, Part II. Spectroscopy. 2006; 21(1): 44–54
17. Bruggemann L., Quapp W., Wennrich R. Test for non-linearity concerning linear calibrated chemical measurements. Accred Qual Assur.2006; 11: 625–631. https://doi.org/10.1007/s00769-006-0205-x.
18. Burrows J, Watson K. Linearity of chromatographic systems in drug analysis part I: theory of nonlinearity and quantification of curvature. Bioanalysis. 2015; 7(14): 1731–1743. https://doi.org/10.4155/bio.15.103.
19. Burrows J, Watson K. Linearity of chromatographic systems in drug analysis part II: a Monte Carlo justification for the use of nonlinear regressions. Bioanalysis. 2015; 7(14): 1745-1761. https://doi.org/10.4155/bio.15.104.
20. Burrows J, Watson K. Linearity of chromatographic systems in drug analysis part III: examples of nonlinear drug assays. Bioanalysis. 2015; 7(14): 1763–1774. https://doi.org/10.4155/bio.15.105.
21. Raposo F. Evaluation of analytical calibration based on least-squares linear regression for instrumental techniques: A tutorial review. TrAC Trends in Analytical Chemistry. 2016; 77: 167–185. https://doi.org/10.1016/j.trac.2015.12.006.
22. Rawski R. I., Sanecki P. T., Kijowska K. M., Skital P. M., Saletnik D. E. Regression Analysis in Analytical Chemistry. Determination and Validation of Linear and Quadratic Regression Dependencies. S. Afr. J. Chem. 2016; 69: 166–173. https://doi.org/10.17159/0379-4350/2016/v69a20.
23. Mymrikov Anton. Is your calibration a straight line? Available at: https://pharm-community.com/2017/8336/ (accessed 25.12.2017).
24. Chemometrics in Chromatography ed. by Komsta L., Vander Heyden Y., Sherma J. Boca Raton: CRC Press. 2018; 506. https://doi.org/10.1201/9781315154404.
25. Doerffel K. Statistik in der analytischen Chemie. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie. 1966; 211. https://doi.org/10.1002/bimj.19690110612.
26. Epshtein N.A. About admissible values of disregard limits for impurities and signal-to-noise ratio when checking chromatographic system sensitivity // The Bulletin of the Scientific Center for Expert Evaluation of Medicinal Products. 2017; 7(2): 85–91 (In Russ.).
27. Reviewer Guidance: Validation of Chromatographic Methods. Center for Drug Evaluation and Research (CDER). Washington. 1994. Available at: https://www.fda.gov/downloads/drugs/guidances/ucm134409.pdf.
28. Rosario LoBrutto and Tarun Patel. Method Validation in HPLC for Pharmaceutical Scientists. Ed. By Kazakevich Y. V., LoBrutto R. Hoboken, New Jersey: John Wiley & Sons, Inc. 2007; 455–502. https://doi.org/10.1002/9780470087954.ch9.
29. Gao Quanyin and Sanvordeker D.R. Analytical methods development and methods validation for oral solid dosage forms in Generic Drug Product Development: Solid Oral Dosage Forms, 2-nd Ed. Shargel, Leon: CRC Press/Taylor & Francis Group. 2014; 31–50.
30. Doerffel K. Statistik in der analytischen Chemie. Leipzig: Deutscher Verlag für Grundstoffindustrie GmbH: 1990; 256.
31. Njaka N. A., Elise O. R., Herinirina N. R., Lucienne V. R., Manovantsoatsiferana H., R.A., Randrianarivony E. Dealing with Outlier in Linear Calibration Curves: A Case Study of Graphite Furnace Atomic Absorption Spectrometry. World Journal of Applied Chemistry. 2018; 3 (1): 10–16.
Review
For citations:
Epshtein N.A. Validation of Analytical Procedures: Graphic and Calculated Criteria for Assessment of Methods Linearity in Practice. Drug development & registration. 2019;8(2):122-130. (In Russ.) https://doi.org/10.33380/2305-2066-2019-8-2-122-130