Preview

Drug development & registration

Advanced search

А Study of Haloperidol Release from Polycomplex Nanoparticles Based on Eudragit® Copolymers

https://doi.org/10.33380/2305-2066-2020-9-3-45-50

Abstract

Introduction. The development of polymer carriers for micro- and nanoscale drug delivery systems is an emerging area of modern pharmaceutical technology. One of the urgent needs in this area is the development of effective methods to study the drug release from these systems.

Aim. This work aimed to study the release of a model drug (MD) haloperidol from polycomplex nanoparticles prepared based on interpolyelectrolyte complexes (IPEC) using various methods.

Materials and methods. IPECs were prepared in the form of nanoparticles based on pharmaceutical polymers (Eudragit® EPO and Eudragit® L100-55). Size distribution of these nanoparticles were determined using dynamic light scattering on Zetasizer Nano-ZS equipment (Malvern Instruments, UK). The release of haloperidol was studied in a medium simulating an artificial nasal fluid using a vertical Franz diffusion cell (PermeGear, USA) as well as a modified USP IV method in a flow-through cell apparatus (DFZ II, Erweka, Germany).

Results and discussion. Statistically significant increase in the release of haloperidol from polycomplex nanoparticles in contrast with the control (haloperidol solution) is observed when using a vertical diffusion or Franz cell, after almost 2.5 hours. At the same time, it was not possible to study the release of drug using the flow-through cell method (USP IV), due, apparently, to the effect of crystallization of haloperidol on the surface of dialysis membranes in the Float-A-Lyzer® G2 nanoadapters. The attempts to eliminate this effect and to improve the membrane permeability to haloperidol by adding surfactants (tween-80) and penetration enhancers (DMSO) were not successful.

Conclusion. Both methods are promising for studying the release of drugs from nanosized carriers; however, in the case of using poorly-soluble drugs, including haloperidol, the diffusion method using a vertical Franz cell is effective.

About the Authors

N. N. Porfiryeva
Institute of Pharmacy, Kazan State Medical University
Russian Federation

Natalia N. Porfiryeva.

16, Fatykha Amirkhan str., Kazan, Republic of Tatarstan, 420126.


V. V. Khutoryanskiy
Institute of Pharmacy, Kazan State Medical University; Reading School of Pharmacy, University of Reading
Russian Federation

Vitaliy V. Khutoryanskiy.

16, Fatykha Amirkhan str., Kazan, Republic of Tatarstan, 420126; Whiteknights, PO box 224, Reading RG66AD.



R. I. Moustafine
Institute of Pharmacy, Kazan State Medical University
Russian Federation

Rouslan I. Moustafine.

16, Fatykha Amirkhan str., Kazan, Republic of Tatarstan, 420126.



References

1. Kaldybekov D. B., Filippov S. K., Radulescu A., Khutoryanskiy V. V. Maleimide-functionalised PLGA-PEG nanoparticles as mucoadhesive carriers for intravesical drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2019;143:24-34. Doi: 10.1016/j.ejpb.2019.08.007.

2. Wijetunge S. S., Wen J., Yeh C.-K., Sun Y. Wheat germ agglutinin liposomes with surface grafted cyclodextrins as bioadhesive dualdrug delivery nanocarriers to treat oral cells. Colloids and Surfaces B: Biointerfaces. 2020;185:110572. Doi: 10.1016/j.colsurfb.2019.110572.

3. You L., Liu X., Fang Z., Xu Q., Zhang Q. Synthesis of multifunctional Fe3O4@PLGA-PEG nano-niosomes as a targeting carrier for treatment of cervical cancer. Materials Science and Engineering: C. 2019;94:291-302. Doi: 10.1016/j.msec.2018.09.044.

4. Tsintou M., Wang C., Dalamagkas K., Weng D., Zhang Y.-N., Niu W. Nanogels for biomedical applications: Drug delivery, imaging, tissue engineering, and biosensors. Nanobiomaterials Science, Development and Evaluation. 2017:87-124.

5. Ismail A., Nasr M., Sammour O. Nanoemulsion as a feasible and biocompatible carrier for ocular delivery of travoprost: Improved pharmacokinetic/pharmacodynamic properties. International Journal of Pharmaceutics. 2020;583:119402. Doi: 10.1016/j.ijpharm.2020.119402.

6. Das M., Nariya P., Joshi A., Vohra A., Devkar R., Seshadri S., Thakore S. Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multidrug resistance reversal. Carbohydrate Polymers. 2020;247:116751. Doi: 10.1016/j.carbpol.2020.116751.

7. Hegazy M., Zhou P., Rahoui N., Wu G., Taloub N., Lin Y., Huang X., Huang Y. A facile design of smart silica nanocarriers via surface-initiated RAFT polymerization as a dual-stimuli drug release platform. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019;581:123797. Doi: 10.1016/j.colsurfa.2019.123797.

8. Mura P. Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. International Journal of Pharmaceutics. 2020;579:119181. Doi: 10.1016/j.ijpharm.2020.119181.

9. Tagde P., Kulkarni G. T., Mishra D. K., Kesharwani P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. Journal of Drug Delivery Science and Technology. 2020;56:101613. Doi: 10.1016/j.jddst.2020.101613.

10. Gajbhiye K. R., Pawar A., Mahadik K. R., Gajbhiye V. PEGylated nanocarriers: A promising tool for targeted delivery to the brain. Colloids and Surfaces B: Biointerfaces. 2020;187:110770. Doi: 10.1016/j.colsurfb.2019.110770.

11. Khan A. R., Yang X., Du X., Yang H., Liu Y., Khan A. Q., Zhai G. Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery. Carbohydrate Polymers. 2020;233:115837. Doi: 10.1016/j.carbpol.2020.115837.

12. Khutoryanskiy V. V., Smyslov R. Y., Yakimansky A. V. Modern Methods for Studying Polymer Complexes in Aqueous and Organic Solutions. Polymer Science, Series A. 2018;60(5):553-576. Doi: 10.1134/S0965545X18050085.

13. Mustafin R. I., Kabanova T. V., Zhdanova E. R., Bukhovets A. V., Garipova V. R., Nasibullin S. F., Kemenova V. A. Diffusion-transport properties of a polycomplex matrix system based on Eudragit® EPO and Carbomer 940. Pharmaceutical Chemistry Journal. 2010;44(3):147-150.

14. Gordeeva D. S., Sitenkova (Bukhovets) A. V., Moustafine R. I. Interpolyelectrolyte complexes based on Eudragit® copolymers as carriers for bioadhesive gastroretentive Metronidazole delivery system. Razrabotka i registratsiya lekarstvennykh sredstv = Drug development & registration. 2020;9(2):13-17. Doi: 10.33380/23052066-2020-9-2-72-76. (In Russ.).

15. Moustafine R. I., Budnikov V. V., Abdullina S. G., Nasibullin S. F., Saleev R. A. Polycomplex Carrier for Buccal Mucoadhesion Delivery of Metronidazole. Razrabotka i registratsiya lekarstvennykh sredstv = Drug development & registration. Doi: 10.33380/2305-2066-2020-9-2-83-90. (In Russ.).

16. Bukhovets A. V., Fotaki N., Khutoryanskiy V. V., Moustafine R. I. Interpolymer complexes of Eudragit® copolymers as novel carriers for colon-specific drug delivery. Polymers. 2020;12(7):1459. Doi: 10.3390/polym12071459.

17. Garipova V., Gennari C., Selmin F., Cilurzo F., Moustafine R. Mucoadhesive interpolyelectrolyte complexes for the buccal delivery of Clobetasol. Polymers. 2018;10(1):85. Doi: 10.3390/polym10010085.

18. Rapedius M., Blanchard J. Comparison of the Hanson Microettet and the Van Kel Apparatus for In Vitro Release Testing of Topical Semisolid Formulations. Pharmaceutical Research. 2001;18(10):1440-1447. Doi: 10.1023/A:1012256923340.

19. Heng D., Culter D. J., Chan H.-K., Yun J., Raper J. A. What is suitable dissolution method for drug release nanoparticles? Pharmaceutical Research. 2008;25(7):1696-1701. Doi: 10.1007/s11095-008-9560-0.

20. Shohin I. E., editor. Dissolution test in drug development and registration. Practical-research text book for the specialists in pharmaceutical industry. Moscow: Publisher Pero, 2015. 320 p. (In Russ.).

21. Alves A. C., Ramos I. I., Nunes C., Magalhaes L. M., Sklenarova H., Segundo M. A., Lima J. L. F. C., Reis S. On-line automated evaluation of lipid nanoparticles transdermal permeation using Franz diffusion cell and low-pressure chromatography. Talanta. 2016;146:369-374. Doi: 10.1016/j.talanta.2015.08.070.

22. Venkateswarlu V., Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. Journal of Controlled Release. 2004;95(3):627-638. Doi: 10.1016/j.jconrel.2004.01.005.

23. Dalmoro A., Bochicchio S., Nasibullin S.F., Bertoncin P., Lamberti G., Barba A. A., Moustafine R. I. Polymer-hybrid lipid nanoparticles as enhanced indomethacin delivery systems. European Journal of Pharmaceutical Sciences. 2018;121:16-28. Doi: 10.1016/j.ejps.2018.05.014.

24. Hu X., Khan M. A., Burgess D. J. A two-stage reverse dialysis in vitro dissolution testing method for passive targeted liposomes. International Journal of Pharmaceutics. 2012;426:211-218. Doi: 10.1016/j.ijpharm.2012.01.030.

25. Palena M. C., Manzo R. H., Jimenez-Kalruz A. F. Self-organized nanoparticles based on drug-interpolyelectrolyte complexes as drug carries. Journal of Nanoparticle Research. 2012;14:867-878. Doi: 10.1007/s11051-012-0867-8.

26. Palena M. C., Garda M. C., Manzo R. H., Jimenez-Kalruz A. F. Selforganized drug-interpolyelectrolyte nanocomplexes loaded with anionic drugs. Characterization and in vitro release evaluation. Journal of Drug Delivery Science and Technology. 2015;30(A):45-53. Doi: 10.1016/j.jddst.2015.09.014.

27. Bhardwaj U., Burgess D. J. A novel USP apparatus 4 based release testing method for dispersed systems. International Journal of Pharmaceutics. 2010;388:287-294. Doi: 10.1016/j.ijpharm.2010.01.009.

28. Tang J., Srinivasan S., Yuan W., Ming R., Liu Y., Dai Z., Noble C. O., Hayes M. E., Zheng N., Jiang W., Szoka F. C., Schwendeman A. Development of a flow-through USP 4 apparatus drug release assay for the evaluation of amphotericin B liposome. European Journal of Pharmaceutics and Biopharmaceutics. 2019;134:107-116. Doi: 10.1016/j.ejpb.2018.11.010.

29. Moustafine R. I., Sitenkov A. Y., Bukhovets A. V., Nasibullin S. F., Appeltans B., Kabanova T. V., Khutoryanskiy V. V., Van den Mooter G. Indomethacin-containing interpolyelectrolyte complexes based on Eudragit® EPO/S 100 copolymers as a novel drug delivery system. International Journal of Pharmaceutics. 2017;524:121-133. Doi: 10.1016/j.ijpharm.2017.03.053

30. Porfiryeva N. N., Nasibullin S. F., Abdullina S. G., Tukhbatullina I. K., Moustafine R. I., Khutoryanskiy V. V. Acrylated Eudragit® EPO as a novel polymeric excipient with enhanced mucoadhesive properties for application in nasal drug delivery. International Journal of Pharmaceutics. 2019;562:241-248. Doi: 10.1016/j.ijpharm.2019.03.027.

31. Choi J. M., Kim H., Cho E., Choi Y., Lee I. S., Jung S. Solubilization of haloperidol by acyclic succinoglycan oligosaccharides. Carbohydrate Polymers. 2012;89(2):564-570. Doi: 10.1016/j.carbpol.2012.03.048.

32. Kumbhara S. A., Kokare C. R., Shrivastava B., Gorain B., Choudhury H. Preparation, characterization, and optimization of asenapine maleate mucoadhesive nanoemulsion using Box-Behnken design: In vitro and in vivo studies for brain targeting. International Journal of Pharmaceutics. 2020;586:119499. Doi: 10.1016/j.ijpharm.2020.119499.

33.


Review

For citations:


Porfiryeva N.N., Khutoryanskiy V.V., Moustafine R.I. А Study of Haloperidol Release from Polycomplex Nanoparticles Based on Eudragit® Copolymers. Drug development & registration. 2020;9(3):45-50. (In Russ.) https://doi.org/10.33380/2305-2066-2020-9-3-45-50

Views: 1926


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)