Preview

Drug development & registration

Advanced search

Development of the Composition and Technology for Obtaining Paclitaxel Nanoscale Formulation Consisting of a Conjugate of Polymer Particles with a Protein Vector Molecule

https://doi.org/10.33380/2305-2066-2021-10-4-81-88

Abstract

Introduction. The use of the anticancer drug paclitaxel is limited due to its high toxicity and lipophilicity. A new polymer composition of paclitaxel has been proposed, which provides targeted transport of the drug into tumor cells and improves its safety.

Aim. Method development for preparation of a novel paclitaxel formulation consisting of a conjugate of PLGA nanoparticles with the third domain of alpha-fetoprotein.

Materials and methods. The object of this study is paclitaxel-loaded nanoparticles based on a copolymer of lactic and glycolic acids, the surface of which is modified with a vector molecule - the recombinant third domain of alpha-fetoprotein. Nanoparticles were obtained by single emulsification method and precipitation. Conjugation with a protein molecule was performed by the carbodiimide method. The analysis of the obtained nanoparticles was carried out using dynamic and electrophoretic light scattering, high performance liquid chromatography, dialysis membrane method.

Results and discussion. Synthesis of paclitaxel-loaded nanoparticles based on a copolymer of lactic and glycolic acids and its conjugation optimization under varying a wide range of conditions have been carried out. The resulting conjugate had an average diameter of 280 ± 12 nm. The conjugation efficiency was 95 %. The release of paclitaxel from the polymer matrix in the release medium was 65 % in 220 h.

Conclusions. A method of obtaining and substantiating the composition of the original nanosized form of paclitaxel is proposed. The possibility of prolonged release of paclitaxel from the polymer matrix has been shown.

About the Authors

M. B. Sokol
N.M. Emanuel Institute of Biochemical Physics, RAS (IBCP RAS); RCMDT, JSC
Russian Federation

Maria B. Sokol

4, Kosygina str., Moscow, 119334; 8, Simferopol'skiy Boulevard, Moscow, 117638



N. G. Yabbarov
N.M. Emanuel Institute of Biochemical Physics, RAS (IBCP RAS); RCMDT, JSC
Russian Federation

Nikita G. Yabbarov

4, Kosygina str., Moscow, 119334; 8, Simferopol'skiy Boulevard, Moscow, 117638



M. R. Mollaeva
N.M. Emanuel Institute of Biochemical Physics, RAS (IBCP RAS); RCMDT, JSC
Russian Federation

Mariia R. Mollaeva

4, Kosygina str., Moscow, 119334; 8, Simferopol'skiy Boulevard, Moscow, 117638



M. V. Chirkina (Fomicheva)
N.M. Emanuel Institute of Biochemical Physics, RAS (IBCP RAS); RCMDT, JSC
Russian Federation

Margarita V. Chirkina (Fomicheva)

4, Kosygina str., Moscow, 119334; 8, Simferopol'skiy Boulevard, Moscow, 117638



V. Yu. Balaban'yan
Lomonosov Moscow State University
Russian Federation

Vadim Yu. Balaban'yan

1, Leninskie gory, Moscow, 119991



E. D. Nikolskaya
N.M. Emanuel Institute of Biochemical Physics, RAS (IBCP RAS); RCMDT, JSC
Russian Federation

Elena D. Nikolskaya

4, Kosygina str., Moscow, 119334; 8, Simferopol'skiy Boulevard, Moscow, 117638



References

1. Bojat V., Oganesyan E. A., Balabanyan V. Yu., Alyautdin R. N. Development of therapeutic monoclonal antibodies for oncology: achievements and perspectives. Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapy. 2009;8(3):37-44. (In Russ.)

2. Alyautdin R. N., Romanov B. K., Lepakhin V. K., Bunyatyan N. D., Merkulov V. A., Mironov A. N. Nanoparticle albumin-bound paclitaxel - first step of nanotechnology into clinical practic. Bezopasnost' i risk farmakoterapii = Safety and Risk of Pharmacotherapy. 2014;2:10-16. (In Russ.)

3. Sofias A. M., Dunne M., Storm G., Allen C. The battle of "nano" paclitaxel. Advanced drug delivery reviews. 2017;122:20-30. DOI: 10.1016/j.addr.2017.02.003.

4. Dranitsaris G., Yu B., Wang L., Sun W., Zhou Ya., King J., Kaura S., Zhang A., Yuan P. Abraxane® versus Taxol® for patients with advanced breast cancer: A prospective time and motion analysis from a Chinese health care perspective. Journal of Oncology Pharmacy Practice. 2016;22(2):205-211. DOI: 10.1177/1078155214556008.

5. Hoogenboezem E. N., Duvall C. L. Harnessing albumin as a carrier for cancer therapies. Advanced Drug Delivery Reviews. 2018;130:73-89. DOI: 10.1016/j.addr.2018.07.011.

6. Danhier F., Ansorena E., Silva J. M., Coco R., Le Breton A., Preat V. PLGA-based nanoparticles: an overview of biomedical applications. Journal of controlled release. 2012;161(2):505-522. DOI: 10.1016/j.jconrel.2012.01.043.

7. Mollaev M., Gorokhovets N., Nikolskaya E., Faustova M., Zabolotsky A., Zhunina O., Sokol M., Zamulaeva I., Severin E., Yabbarov N. Type of pH sensitive linker reveals different time-dependent intracellular localization, in vitro and in vivo efficiency in alpha-fetoprotein receptor targeted doxorubicin conjugate. International Journal of Pharmaceutics. 2019;559:138-146. DOI: 10.1016/j.ijpharm.2018.12.073.

8. Naz Z., Usman S., Saleem K., Ahmed S., Bashir H., Bilal M., Sumrin A. Alpha-fetoprotein: A fabulous biomarker in hepatocellular, gastric and rectal cancer diagnosis. Biomedical Research. 2018;29(12):2478-2483. DOI: 10.4066/biomedicalresearch.29-17-1550.

9. Godovannyi A. V., Vorontsov E. A., Gukasova N. V., Pozdnyakova N. V., Vasilenko E. A., Yabbarov N. G., Severin S. E., Severin E. S., Gnuchev N. V. Antitumor activity of targeted nanosome delivery systems based on poly(lactic-co-glycolic acid) nanoparticles, paclitaxel, and a recombinant alpha-fetoprotein fragment. Nanotechnologies in Russia. 2012;7(1-2):76-84. DOI: 10.1134/S1995078012010077.

10. Godovannyi A. V., Vorontsov E. A., Gukasova N. V., Pozdnyakova N. V., Vasilenko E. A., Yabbarov N. G., Dubovik E. G., Severin S. E., Severin E. S., Gnuchev N. V. Targeted delivery of paclitaxel-loaded recombinant α-fetoprotein fragment-conjugated nanoparticles to tumor cells. Doklady Biochemistry and Biophysics. 2011;439(1):158-160. DOI: 10.1134/S160767291104003X.

11. Albert C., Huang N., Tsapis N., Geiger S., Rosilio V., Mekhloufi G., Chapron D., Robin B., Beladjine M., Nicolas V., Fattal E., Agnely F. Bare and Sterically Stabilized PLGA Nanoparticles for the Stabilization of Pickering Emulsions. Langmuir. 2018;34(46):13935-13945. DOI: 10.1021/acs.langmuir.8b02558.

12. Hermanson G. Bioconjugate techniques. 3rd Edition. Cambridge: Academic press; 2013. 1200 p.

13. Nikol'skaya E. D., Yabbarov N. G., Sokol M. B., Zhunina O. A., Faustova M. R., Zabolotskiy A. I., Fomicheva M. V., Mollaev M. D., Pomazkova T. A., Sapelkin M. A. Vysokoeffektivnyy sposob polucheniya lekarstvennoy formy adresnogo deystviya dlya terapii zlokachestvennykh novoobrazovaniy [Highly effective method for preparing dosage form of targeted action for therapy of malignant growth]. Patent RUS № 2727924 C1. 27.07.2020. Available at: https://istina.msu.ru/patents/379152620/ Accessed: 20.08.2021. (In Russ.)

14. Tereshchenko O. G., Nikolskaya E. D., Zhunina O. A., Zavarzina V. V., Yabbarov N. G., Fomicheva M. V., Zubkov E. V., Sokol M. B., Gukasova N. V., Severin E. S. Formulation of perspective hepatoprotector polymeric forms based on silybin and ursodeoxycholic acid. Izvestiya Akademii nauk. Seriya khimicheskaya = Russian Chemical Bulletin. 2018;12:2290-2296. (In Russ.)

15. Sokol M. B., Nikolskaya E. D., Yabbarov N. G., Zenin V. A., Faustova M. R., Belov A. V., Zhunina O. A., Mollaev M. D., Zabolotsky A. I., Tereshchenko O. G., Severin E. S. Development of novel PLGA nanoparticles with co-encapsulation of docetaxel and abiraterone acetate for a highly efficient delivery into tumor cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2019;107(4):1150-1158. DOI: 10.1002/jbm.b.34208.

16. Sokol M., Zenin V., Yabbarov N., Mollaev M., Zabolotsky A., Mollaeva M., Fomicheva M., Kuznetsov S., Popenko V., Seregina I., Nikolskaya E. Validated HPLC method for paclitaxel determination in PLGA submicron particles conjugated with α-fetoprotein third domain: Sample preparation case study. Annales Pharmaceutiques Frangaises. 2021;79(5):500-510. DOI: 10.1016/j.pharma.2021.02.001.

17. Nikol'skaya E. D., Yabbarov N. G., Zhunina O. A., Severin E. S. Kon''yugat protivoopukholevykh preparatov s rekombinantnym al'fa-fetoproteinom i ego funktsional'nymi fragmentami i sposob ikh polucheniya [Conjugate of anticancer drugs with recombinant alpha-fetoprotein and its functional fragments and method for their preparation]. Patent RUS № 2630974. 15.09.2017. Available at: https://edrid.ru/rid/218.016.060b.html. Accessed: 20.08.2021. (In Russ.)

18. Feczko T., Toth J., Dosa G., Gyenis J. Influence of process conditions on the mean size of PLGA nanoparticles. Chemical Engineering and Processing: Process Intensification. 2011;50(8):846-853. DOI: 10.1016/j.cep.2011.05.006.

19. Nikolskaya E., Sokol M., Faustova M., Zhunina O., Mollaev M., Yabbarov N., Tereshchenko O., Popov R., Severin E. The comparative study of influence of lactic and glycolic acids copolymers type on properties of daunorubicin loaded nanoparticles and drug release. Acta of Bioengineering and Biomechanics. 2018;20(1):65-77. DOI: 10.5277/ABB-01028-02.

20. Haddadi A., Jahan S. T. Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles. International journal of nanomedicine. 2015;10(1):7371-7384. DOI: 10.2147/IJN.S90866.

21. Gelperina S., Maksimenko O., Khalansky A., Vanchugova L., Shipulo E., Abbasova K., Berdiev R., Wohlfart S., Chepurnova N., Kreuter J. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: Influence of the formulation parameters. European Journal of Pharmaceutics and Biopharmaceutics. 2010;74(2):157-163. DOI: 10.1016/j.ejpb.2009.09.003.

22. Sahana D. K., Mittal G., Bhardwaj V., Kumar M. N. V. R. PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug. Journal of Pharmaceutical Sciences. 2008;97(4):1530-1542. DOI: 10.1002/jps.21158.

23. Lebouille J. G. J. L., Stepanyan R., Slot J. J. M., Stuart M. A. C., Tuinier R. Nanoprecipitation of polymers in a bad solvent. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;460:225-235. DOI: 10.1016/j.colsurfa.2013.11.045.

24. Wan S., Zhang L., Quan Yu., Wei K. Resveratrol-loaded PLGA nanoparticles: enhanced stability, solubility and bioactivity of resveratrol for non-alcoholic fatty liver disease therapy. Royal Society Open Science. 2018;5(11):181457. DOI: 10.1098/rsos.181457.

25. Gosudarstvennaya Farmakopeya Rossiyskoy Federatsii. XIV izd. [State Pharmacopoeia of the Russian Federation. XIV ed.]. V. 1-4. Moscow: Ministerstvo zdravookhraneniya Rossiyskoy Federatsii; 2018. 7019 p. (In Russ.)

26. Abouelmagd S. A., Sun B., Chang A. C., Ku Y. J., Yeo Y. Release Kinetics Study of Poorly Water-Soluble Drugs from Nanoparticles: Are We Doing It Right? Molecular Pharmaceutics. 2015;12(3):997-1003. DOI: 10.1021/mp500817h.


Supplementary files

1. Графический абстракт
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾

Review

For citations:


Sokol M.B., Yabbarov N.G., Mollaeva M.R., Chirkina (Fomicheva) M.V., Balaban'yan V.Yu., Nikolskaya E.D. Development of the Composition and Technology for Obtaining Paclitaxel Nanoscale Formulation Consisting of a Conjugate of Polymer Particles with a Protein Vector Molecule. Drug development & registration. 2021;10(4):81-88. (In Russ.) https://doi.org/10.33380/2305-2066-2021-10-4-81-88

Views: 946


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)