Preview

Drug development & registration

Advanced search

Modification of a model of non-alcoholic fat liver disease in rats with a сombination of a hypercaloric diet and hypodynamia

https://doi.org/10.33380/2305-2066-2021-10-4(1)-155-165

Abstract

Introduction. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world, and non-alcoholic steatohepatitis is the second most common cause of liver transplantation in the adult population. An urgent task is to find and develop an optimal model of NAFLD in laboratory animals, which would reproduce all the features of this disease in the clinic.

Aim. Modification of the NAFLD model in laboratory animals (rats), which allows the obtained data to be transmitted to humans as fully as possible.

Materials and methods. The study was conducted on 52 outbred white male rats of the same age. As the basis of the model, a hypercaloric high-fat diet was used with the addition of food appeal enhancers (sodium glutamate and liquid shrimp extract) and for the first-time conditions of hypodynamia were used – restriction of the motor activity of animals using specially designed cells, in which an individual 11 × 18 cm cell was allocated for each individual. The duration of the study was 12 months. In the course of the experiment, body weight, physical performance, biochemical parameters of blood serum and urine in dynamics were assessed, and lethality was recorded. After the end of the study, the mass of internal organs, visceral and epididymal fat was analyzed, and a histological examination of the liver was performed.

Results and discussion. In the course of the experimental study, the development of NAFLD in rats of the control group of animals was histologically confirmed. A high mortality rate was revealed in the group of animals with pathology. Compared with animals of the intact group, a statistically significant increase in their body weight, liver weight, visceral and epididymal fat, a decrease in physical performance, disturbances in lipid, carbohydrate and protein metabolism were revealed, as well as signs of deterioration of the protein synthesis and excretory functions of the liver.

Conclusion. A number of advantages of the NAFLD model with a combination of a hypercaloric diet and hypodynamic conditions were revealed, including the similarity of the conditions for the formation and pathogenesis of the disease in experimental animals and humans, which ensures the adequacy of data translation from preclinical practice to clinical practice.

About the Authors

A. V. Bunjat
V. A. Almazov NMRC
Russian Federation

Anna V. Bunjat

2, Akkuratov str., Saint Petersburg, 197341, Russia



O. M. Spasenkova
Saint-Petersburg State Chemical-Pharmaceutical University
Russian Federation

14A, Prof. Popov str., Saint-Petersburg, 197376, Russia



V. E. Karev
Federal Medical and Biological Agency Federal State Institution Scientific and Research Institute of Children’s Infections
Russian Federation

9, Professor Popov str., St. Petersburg, 197022, Russia



A. V. Karavaeva
Saint-Petersburg State Chemical-Pharmaceutical University
Russian Federation

14A, Prof. Popov str., Saint-Petersburg, 197376, Russia



D. Ju. Ivkin
Saint-Petersburg State Chemical-Pharmaceutical University
Russian Federation

14A, Prof. Popov str., Saint-Petersburg, 197376, Russia



A. N. Kulikov
V. A. Almazov NMRC
Russian Federation

2, Akkuratov str., Saint Petersburg, 197341, Russia



S. V. Okovityi
Saint-Petersburg State Chemical-Pharmaceutical University
Russian Federation

14A, Prof. Popov str., Saint-Petersburg, 197376, Russia



N. V. Kirillova
Saint-Petersburg State Chemical-Pharmaceutical University
Russian Federation

14A, Prof. Popov str., Saint-Petersburg, 197376, Russia



References

1. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL–EASD–EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. Journal of Hepatology. 2016;64(6):1388–1402. DOI: 10.1016/j.jhep.2015.11.004.

2. Lazebnik L. B., Golovanova E. V., Turkina S. V., Raikhelson K. L., Okovityy S. V., Drapkina O. M., Maev I. V., Martynov A. I., Roitberg G. E., Khlynova O. V., Abdulganieva D. I., Alekseenko S. A., Ardatskaya M. D., Bakulin I. G., Bakulina N. V., Bueverov A. O., Vinitskaya E. V., Volynets G. V., Eremina E. Yu., Grinevich V. B., Dolgushina A. I., Kazyulin A. N., Kashkina E. I., Kozlova I. V., Konev Yu. V., Korochanskaya N. V., Kravchuk Yu. A., Li E. D., Loranskaya I. D., Makhov V. M., Mekhtiev S. N., Novikova V. P., Ostroumova O. D., Pavlov Ch. S., Radchenko V. G., Samsonov A. A., Sarsenbaeva A. S., Sayfutdinov R. G., Seliverstov P. V., Sitkin S. I., Stefanyuk O. V., Tarasova L. V., Tkachenko E. I., Uspensky Yu. P., Fominykh Yu. A., Khavkin A. I., Tsyganova Yu. V., Sharhun O. O. Non-alcoholic fatty liver disease in adults: clinical picture, diagnosis, treatment. Guidelines for therapists, third version. Jeksperimental’naja i Klinicheskaja Gastrojenterologija = Experimental and Clinical Gastroenterology. 2021;1(1):4–52. (In Russ.) DOI: 10.31146/1682-8658-ecg-185-1-4-52.

3. Cariou B., Byrne C. D., Loomba R., Sanyal A. J. Nonalcoholic fatty liver disease as a metabolic disease in humans: A literature review. Diabetes, Obesity and Metabolism. 2021;23(5):1069–1083. DOI: 10.1111/dom.14322.

4. Drapkina O. M., Ivashkin V. T. Epidemiological features of non-alcoholic fatty liver disease in Russia (results of an open multicenter prospective observation study DIREGL 01903). Rossijskij Zhurnal Gastrojenterologii, Gepatologii, Koloproktologii = Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2014;24(4):32–38. (In Russ.)

5. Cotter T. G., Charlton M. Nonalcoholic steatohepatitis after liver transplantation. Liver Transplantation. 2020;26(1):141–159. DOI: 10.1002/lt.25657.

6. Okovityj S. V., Shustov E. B., Belyh M. A., Kirillova N. V., Spasenkova O. M., Ivanov A. G., Karavaeva A. V., Tkacheva A. V. Modeling of non-alcoholic hepatic steatosis: features of metabolic changes in the body of laboratory animals. Biomeditsina = Journal Biomed. 2018;4:29–43. (In Russ.)

7. Le K. A., Tappy L. Metabolic effects of fructose. Current Opinion in Clinical Nutrition & Metabolic Care. 2006;9(4):469–475. DOI: 10.1097/01.mco.0000232910.61612.4d.

8. Panchal S. K., Poudyal H., Iyer A., Nazer R., Alam A., Diwan V., Kauter K., Sernia C., Campbell F., Ward L., Gobe G., Fenning A., Brown L. High-carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. Journal of Cardiovascular Pharmacology. 2011;57(5):611–624. DOI: 10.1097/FJC.0b013e3181feb90a.

9. Michaelis O. E., Ellwood K. C., Judge J. M. Scoene N. W., Hansen C. T. Effect of dietary sucrose on the SHR/N-corpulent rat: a new model for insulinindependent diabetes. American Journal of Clinical Nutrition. 1984;39(4):612–618. DOI: 10.1093/ajcn/39.4.612.

10. Zhong F., Zhou X., Xu J., Gao L. Rodent models of nonalcoholic fatty liver disease. Digestion. 2020;101(5):522–535. DOI: 10.1159/000501851.

11. Makarova M. N., Makarov V. G. Diet-induced models of metabolic disorders. Report 4: Experimental non-alcoholic fatty liver disease. Laboratornye zhivotnye dlja nauchnyh issledovanij. 2018;4:41–49. (In Russ.) DOI: 10.29296/2618723X-2018-04-04.

12. Xu B. L., Wang R., Ma L., Dong W., Zhao W., Zhang Z., Wang J., Zhang X. Effects of caloric intake on learning and memory function in juvenile C57BL/6J mice. BioMed Research International. 2015;2(1):1–7. DOI: 10.1155/2015/759803.

13. Wang H. Y. Zheng Y., Wang G. L., Li H. X. Identification of microRNA and bioinformatics target gene analysis in beef cattle intramuscular fat and subcutaneous fat. Molecular BioSystems. 2013;9(8):2154–2162. DOI: 10.1039/c3mb70084d.

14. Spruss A., Kanuri G., Wagnerberger S., Haub S., Bischoff S. C., Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology. 2009;50(4):1094–1104. DOI: 10.1002/hep.23122.

15. Wang D., Sievenpiper J. L., de Souza R. J., Cozma A. I., Chiavaroli L., Ha V., Mirrahimi A., Carleton A. J., Buono M. D., Jenkins A. L., Leiter L. A., Wolever T. M. S., Beyene J., Kendall C. W. C., Jenkins D. J. A. Effect of fructose on postprandial triglycerides: a systematic review and meta-analysis of controlled feeding trials. Atherosclerosis. 2014;232(1):125–133. DOI: 10.1016/j.atherosclerosis.2013.10.019.

16. Derho M. A., Sereda T. I., Goloborod’ko G. N. Effect of monosodium glutamate on body weight and internal organs of rats. Fundamental’nye problemy nauki. Ufa: RIO MTsII OMEGA SAYNS; 2015. 142 p. (In Russ.)

17. Kulikov A. N., Okovityj S. V., Ivkin D. Yu., Karpov A. A., Lisickij D. S., Ljubishin M. M. Effects of empagliflozin in an experimental model of chronic heart failure in rats with normoglycemia. Zhurnal Serdechnaja Nedostatochnost’. 2016;17(6):454–460. (In Russ.) DOI: 10.18087/rhfj.2016.6.2289.

18. Davydov V. V., Medvedev D. V., Shodiev D. R., Nekrasova M. S. Influence of violation of the light regime on lipid metabolism and functional parameters in intact rats and animals with alimentary obesity. Nauka molodyh (Eruditio Juvenium). 2017;2:175–184. (In Russ.)

19. Prikhodko V. A., Poveryaeva M. A., Sysoev Yu. I., Shustov E. B., Bunyat A. V. Effects of L-ornithine L-aspartate on the physical performance with experimental non-alcoholic fatty liver disease. Biomeditsina = Biomed. 2020;16(3):77–80. (In Russ.) DOI: 10.33647/2074-5982-16-3-77-80.

20. Khalil F., Nabil Rafat M., Salah V., Attia M., Ibrahim W. Study of lipid profile in different grades of non-alcoholic fatty liver disease. The Egyptian Journal of Hospital Medicine. 2018;73(8):7388–7393.

21. Trashkov A. P., Brus T. V., Vasil’ev A. G., Artemenko M. R., Pechatnikova V. A., Gumennaja M. A. Biochemical profile of rats with non-alcoholic fatty liver disease of varying severity and its correction with Remaxol. Pediatr. 2017;8(4):78–85. (In Russ.) DOI: 10.17816/PED8478-85.

22. Souza M. R., Diniz M. F., Medeiros-Filho J. E., Araujo M. S. Metabolic syndrome and risk factors for non-alcoholic fatty liver disease. Arquivos de Gastroenterologia. 2012;49(1):89–96. DOI: 10.1590/s0004-28032012000100015.

23. Adiels M., Taskinen M. R., Packard C., Caslake M. J., Soro-Paavonen A., Westerbacka J., Vehkavaara S., Hakkinen A., Olofsson S. O., Yki-Jarvinen H., Boren J. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia. 2006;49(4):755–765. DOI: 10.1007/s00125-005-0125-z.

24. Gaggini M., Morelli M., Buzzigoli E., DeFronzo R. A., Bugianesi E., Gastaldelli A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients. 2013;5(5):1544–1560. DOI: 10.3390/nu5051544.

25. Mahmoud A. A., Elshazly S. M. Ursodeoxycholic acid ameliorates fructose-induced metabolic syndrome in rats. PLoS One. 2014;9(9):e106993. DOI: 10.1371/journal.pone.0106993.

26. Mamikutty N., Thent Z. C., Sapri S. R., Sahruddin N. N., Mohd Y. M. R., Haji S. F. The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. BioMed Research International. 2014;2014:263897. DOI: 10.1155/2014/263897.

27. D’Amico G., Garcia-Tsao G., Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: A systematic review of 118 studies. Journal of hepatology. 2006;44(1):217–231. DOI: 10.1016/j.jhep.2005.10.013.

28. Undurti N. D. Beneficial role of bioactive lipids in the pathobiology, prevention, and management of HBV, HCV and alcoholic hepatitis, NAFLD, and liver cirrhosis: A review. Journal of Advanced Research. 2019;17:17–29. DOI: 10.1016/j.jare.2018.12.006.

29. Gyebi L., Soltani Z., Reisin E. Lipid nephrotoxicity: new concept for an old disease. Current hypertension reports. 2012;14(2):177–181. DOI: 10.1007/s11906-012-0250-2.

30. Sackmann-Sala L., Berryman D. E., Munn R. D., Kopchick J. J. Heterogeneity among white adipose tissue depots in male c57bl/6jmice. Obesity. 2012;20(1):101–111. DOI:10.1038/oby.2011.235.

31. Azimova M. O., Blinova N. V., Zhernakova Ju. V., Chazova I. E. Obesity as a predictor of cardiovascular disease: the role of local fat depots. Sistemnye Gipertenzii. 2018;15(3):39–43. (In Russ.) DOI: 10.26442/2075-082X_2018.3.39-43.

32. Rocha‐Rodrigues S., Rodriguez A., Becerril S., Ramirez B., Goncalves I., Beleza J., Fruhbeck G., Ascensao A., Magalhaes J. Physical exercise remodels visceral adipose tissue and mitochondrial lipid metabolism in rats fed a high‐fat diet. Clinical and Experimental Pharmacology and Physiology. 2017;44(3):386–394. DOI: 10.1111/1440-1681.12706.

33. Butrova A. S., Dzgoeva F. H. Visceral obesity is a key link in metabolic syndrome. Ozhirenie i metabolizm. 2004;1:10–16. (In Russ.)


Supplementary files

1. Графический абстракт
Subject
Type Исследовательские инструменты
View (137KB)    
Indexing metadata ▾

Review

For citations:


Bunjat A.V., Spasenkova O.M., Karev V.E., Karavaeva A.V., Ivkin D.J., Kulikov A.N., Okovityi S.V., Kirillova N.V. Modification of a model of non-alcoholic fat liver disease in rats with a сombination of a hypercaloric diet and hypodynamia. Drug development & registration. 2021;10(4):155-165. (In Russ.) https://doi.org/10.33380/2305-2066-2021-10-4(1)-155-165

Views: 912


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)