Preview

Drug development & registration

Advanced search

Development, validation, and application of a method for assessing the viability of Escherichia coli for flow cytometry

https://doi.org/10.33380/2305-2066-2026-15-1-2150

Abstract

Introduction. About 30 % of genetically engineered therapeutic proteins are produced in Escherichia coli. In the production of these proteins, cell viability is one of the key factors determining process efficiency and product quality. Controlling viability is essential when creating cell banks and optimizing E. coli cultivation conditions. Changes in cultivation parameters can affect viability and lead to shifts in the proportions of viable cells, dead cells, and cells undergoing apoptosis-like death (ALD). Flow cytometry is one method used to assess viability and distinguish between different cell populations.

Aim. To develop, validate and test a methodology for assessing the viability of E. coli using flow cytometry.

Materials and methods. To assess cell viability, we stained E. coli with propidium iodide (PI) and annexin V-FITC (An-V-FITC). We identified populations of live, dead, and ALD cells using dual staining with PI and An-V-FITC. The method was validated in accordance with the State Pharmacopoeia, the Decision of the EEC Council No. 85 dated 03.11.2016, and ICH guidelines. We evaluated the method’s applicability in developing conditions for cell bank creation and cultivation.

Results and discussion. We developed a method for assessing the viability of E. coli cells using flow cytometry and dual staining with PI and An-V-FITC, which enables the identification of live, dead, and ALD cell populations. Validation results demonstrated that the method meets the criteria: specificity (6 %), linearity (R2 > 0.9), accuracy (97–102 %), the limit of quantification (confirmed, 117 %), repeatability (1–10 %), intra-laboratory precision (2–17 %), analytical range (6.4–100 %). In selecting optimal conditions for cell bank creation, viability assessment enabled us to determine the optimal ratio of culture fluid to cryoprotectant (3 : 1) at an optical density of OD600 = 15, resulting in over 97 % viable cells after cryopreservation. During strain cultivation process development, the method facilitated the selection of optimal conditions. In the bioreactor, the proportion of dead cells increased by only 2.5 %, and the proportion of ALD cells increased by 7 % after 8 hours of induction.

Conclusion. We developed and validated a methodology for assessing E. coli viability that can be used during the development and production of therapeutic products.

About the Authors

A. S. Kazakova
Closed Joint-Stock Company "Pharm-Holding"
Russian Federation

34-A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515



A. N. Afanaseva
Closed Joint-Stock Company "Pharm-Holding"
Russian Federation

34-A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515



A. A. Evreiskaya
Closed Joint-Stock Company "Pharm-Holding"
Russian Federation

34-A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515



A. D. Akino
Closed Joint-Stock Company "Pharm-Holding"
Russian Federation

34-A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515



A. K. Zenkova
Closed Joint-Stock Company "Pharm-Holding"
Russian Federation

34-A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515



V. B. Saparova
Closed Joint-Stock Company "Pharm-Holding"
Russian Federation

34-A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515



Z. R. Khasanshina
Closed Joint-Stock Company "Pharm-Holding"; ITMO University
Russian Federation

34-A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515; 
49A, Kronverksky prospekt, Saint-Petersburg, 197101



M. D. Bochkareva
Closed Joint-Stock Company "Pharm-Holding"
Russian Federation

34-A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515



R. V. Drai
Closed Joint-Stock Company "Pharm-Holding"
Russian Federation

34-A, Svyazi str., Strelna settlement, Saint-Petersburg, 198515



References

1. Rösner L. S., Walter F., Ude C., John G. T., Beutel S. Sensors and Techniques for On-Line Determination of Cell Viability in Bioprocess Monitoring. Bioengineering. 2022;9(12):762. DOI: 10.3390/bioengineering9120762.

2. Meyer C. T., Lynch G. K., Stamo D. F., Miller E. J., Chatterjee A., Kralj J. M. A high-throughput and low-waste viability assay for microbes. Nature Microbiology. 2023;8(12):2304–2314. DOI: 10.1038/s41564-023-01513-9.

3. Martini K. M., Boddu S. S., Nemenman I., Vega N. M. Maximum likelihood estimators for colony-forming units. Microbiology Spectrum. 2024;12:e03946-23. DOI: 10.1128/spectrum.03946-23.

4. Śliwa-Dominiak J., Czechowska K., Blanco A., Sielatycka K., Radaczyńska M., Skonieczna-Żydecka K., Marlicz W., Łoniewski I. Flow Cytometry in Microbiology: A Review of the Current State in Microbiome Research, Probiotics, and Industrial Manufacturing. Cytometry Part A. 2025;107(3):145–164. DOI: 10.1002/cyto.a.24920.

5. Agus R., Avino F., Lavrikova A., Myers B., Furno I. Flow cytometry study of Escherichia coli treated with plasma-activated water: confirming the absence of the viable but non-culturable state in bacteria. Frontiers in Microbiology. 2025;16:1592471. DOI: 10.3389/fmicb.2025.1592471.

6. McEvoy B., Lynch M., Rowan N. J. Opportunities for the application of real-time bacterial cell analysis using flow cytometry for the advancement of sterilization microbiology. Journal of Applied Microbiology. 2021;130(6):1794–1812. DOI: 10.1111/jam.14876.

7. Teixeira P., Fernandes B., Silva A. M., Dias N., Azeredo J. Evaluation by Flow Cytometry of Escherichia coli Viability in Lettuce after Disinfection. Antibiotics. 2020;9(1):14. DOI: 10.3390/antibiotics9010014.

8. Vanhauteghem D., Audenaert K., Demeyere K., Hoogendoorn F., Janssens G. P. J., Meyer E. Flow cytometry, a powerful novel tool to rapidly assess bacterial viability in metal working fluids: Proof-of-principle. PLoS ONE. 2019;14(2):e0211583. DOI: 10.1371/journal.pone.0211583.

9. Ou F., McGoverin C., Swift S., Vanholsbeeck F. Absolute bacterial cell enumeration using flow cytometry. Journal of Applied Microbiology. 2017;123(2):464–477. DOI: 10.1111/jam.13508.

10. Davey H., Guyot S. Estimation of Microbial Viability Using Flow Cytometry. Current Protocols in Cytometry. 2020;93(1):e72. DOI: 10.1002/cpcy.72.

11. Léonard L., Chibane L. B., Bouhedda B. O., Degraeve P., Oulahal N. Recent Advances on Multi-Parameter Flow Cytometry to Characterize Antimicrobial Treatments. Frontiers in Microbiology. 2016;7:1225. DOI: 10.3389/fmicb.2016.01225.

12. Lakshmanan I., Batra S. K. Protocol for Apoptosis Assay by Flow Cytometry Using Annexin V Staining Method. BIO-PROTOCOL. 2013;3(6):e374. DOI: 10.21769/bioprotoc.374.

13. Rieger A. M., Nelson K. L., Konowalchuk J. D., Barreda D. R. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. Journal of Visualized Experiments. 2011;(50):2597. DOI: 10.3791/2597.

14. Han G., Lee D. G. Antibacterial Mode of Action of β-Amyrin Promotes Apoptosis-Like Death in Escherichia coli by Producing Reactive Oxygen Species. Journal of Microbiology and Biotechnology. 2022;32(12):1547–1552. DOI: 10.4014/jmb.2209.09040.

15. Lai M.-J., Huang Y.-W., Chen H.-C., Tsao L.-I., Chang Chien C.-F., Singh B., Liu B. R. Effect of Size and Concentration of Copper Nanoparticles on the Antimicrobial Activity in Escherichia coli through Multiple Mechanisms. Nanomaterials. 2022;12(21):3715. DOI: 10.3390/nano12213715.

16. Dwyer D. J., Camacho D. M., Kohanski M. A., Callura J. M., Collins J. J. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Molecular Cell. 2012;46(5):561–572. DOI: 10.1016/j.molcel.2012.04.027.

17. Erental A., Sharon I., Engelberg-Kulka H. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biology. 2012;10(3):e1001281. DOI: 10.1371/journal.pbio.1001281.

18. Kwun M. S., Lee D. G. Bacterial Apoptosis-Like Death through Accumulation of Reactive Oxygen Species by Quercetin in Escherichia coli. Journal of Microbiology and Biotechnology. 2024;34(7):1395–1400. DOI: 10.4014/jmb.2403.03057.

19. Lin S., Lin Z., Zhou F., Wang D., Zheng B., Hu J. Polyoxometalate K<sub>6</sub>[P<sub>2</sub>Mo<sub>18</sub>O<sub>62</sub>] Inactivates Escherichia coli O157:H7 by Inducing recA Expression and Apoptosis-like Bacterial Death. International Journal of Molecular Sciences. 2023;24(14):11469. DOI: 10.3390/ijms241411469.

20. Choi H., Hwang J.-S., Lee D. G. Coprisin exerts antibacterial effects by inducing apoptosis-like death in Escherichia coli. IUBMB Life. 2016;68(1):72-8. DOI: 10.1002/iub.1463.

21. Li J., Ma L., Liao X., Liu D., Lu X., Chen S., Ye X., Ding T. Ultrasound-Induced Escherichia coli O157:H7 Cell Death Exhibits Physical Disruption and Biochemical Apoptosis. Frontiers in Microbiology. 2018;9:2486. DOI: 10.3389/fmicb.2018.02486.

22. Chen B., Zhao Y., Li Z., Pan J., Wu H., Qiu G., Feng C., Wei C. Immobilization of Phosphatidylserine by Ethanol and Lysozyme on the Cell Surface for Evaluation of Apoptosis-Like Decay in Activated-Sludge Bacteria. Applied and Environmental Microbiology. 2020;86(14):e00345-20. DOI: 10.1128/AEM.00345-20.

23. Sezonov G., Joseleau-Petit D., D’Ari R. Escherichia coli physiology in Luria-Bertani broth. Journal of Bacteriology. 2007;189(23):8746–8749. DOI: 10.1128/JB.01368-07.

24. Erental A., Kalderon Z., Saada A., Smith Y., Engelberg-Kulka H. Apoptosis-like death, an extreme SOS response in Escherichia coli. mBio. 2014;5(4):e01426-14. DOI: 10.1128/mBio.01426-14.


Supplementary files

1. Графический абстракт
Subject
Type Other
View (987KB)    
Indexing metadata ▾

Review

For citations:


Kazakova A.S., Afanaseva A.N., Evreiskaya A.A., Akino A.D., Zenkova A.K., Saparova V.B., Khasanshina Z.R., Bochkareva M.D., Drai R.V. Development, validation, and application of a method for assessing the viability of Escherichia coli for flow cytometry. Drug development & registration. (In Russ.) https://doi.org/10.33380/2305-2066-2026-15-1-2150

Views: 25

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)