Preview

Drug development & registration

Advanced search

CHARACTERISTICS AND STABILITY ASSESSMENT OF LIPOSOMAL PREPARATIONS

Abstract

The main objective of pharmaceutical technology is to maximize the use of «pharmaceutical factors» for ensuring the high quality of prepared medicines, which coincides with the strategic task of biopharmacy, which is to maximize the effectiveness of medicines and reducing to the maximum of their possible adverse effect on the body According to biopharmaceutical studies, dosage form substantially affect the validity of the included medicinal substances. In recent decades, a significant part of scientific research in the field of pharmacy is devoted to the creation of dosage forms based on targeted delivery systems of diagnostic and medicinal substances, among which liposomes have gained the greatest popularity. Liposomes are considered as promising delivery systems of drugs in the bloodstream because of its colloid properties, controlled size, surface characteristics, membranotropic and biocompatibility. However, the colloidal disperse systems are thermodynamically unstable, so the undoubted practical relevance in the development stage and the obtaining of liposomes presents a characterization and evaluation of stability of the resulting product. For this purpose, as a rule, use 3 core indicators - size of vesicles, polydispersity index and zeta-potential. The size of liposomes is one of the main indicators of the quality of liposomal preparation, which mainly depends on its component composition and technology. Dispersion of liposomes significantly affects the rate of elimination and distribution of the drug, the concentration in biological fluids and tissues, as well as determines the mechanism of cell internalization. Since in most macromolecular and nanodisperse systems molecules and particles are not the same, when describing the properties of systems, it is necessary to use the particle distribution functions according to their parameters, i.e. in the study of real systems to take into account their polydispersity, since monodisperse approximations can lead to incorrect conclusions about the properties of particles. The width of the particle size distribution is characterized by the polydispersity index. Zeta-potential is an important indicator of the surface charge of particles and a measure of electrostatic interaction (repulsion or attraction) between particles, as well as one of the main parameters affecting the stability of dispersed systems. Liposomes with high negative or positive zeta-potential repel each other and remain monodisperse and stable, and with low zeta-potential - are able to unite, aggregate and form unstable compounds. In addition, this parameter also allows you to predict the interaction of liposomes and cells.

About the Authors

M. V. Dmitrieva
N. N. Blokhin National Medical Research Center of Oncology
Russian Federation


T. A. Timofeeva
Sechenov First State Medical University
Russian Federation


N. A. Oborotova
N. N. Blokhin National Medical Research Center of Oncology; Sechenov First State Medical University
Russian Federation


I. I. Krasnyuk
Sechenov First State Medical University
Russian Federation


O. I. Stepanova
Sechenov First State Medical University
Russian Federation


References

1. Babadjanyanc L. K., Voitilov A. V., Voitilov V. V., Trusov A. A. Analysis of the polydispersity of macromolecular and nanodisperse systems by electro-optic methods // High-Molecular Compounds. Series C. 2010. T. 52. № 5. Р. 1-12.

2. Ballyuzek F. V., Kurkaev A. S., Sente L. Nanotechnology for medicine. St.-Peterburg, «Sezam- Print», 2008. 104 с.

3. Barsukov L. I. Liposomes // Soros Educational Journal. 1998. № 10. Р. 2-9.

4. Barishnikov A. Yu. Nanostructured liposomal systems as a means of antitumor drugs delivery. // Vestnik RAMN. 2012. № 3. Р. 23-30.

5. Gennis R. Biomembranes: molecular structure and functions. / Per. s angl. - M.: Mir, 1997. 624 р.

6. Borschevskii G. I., Yanchuk I. B., Yarnih T. G. A study of the physico-chemical properties of liposomal preparations // Ukrainian Biopharmaceutical Journal. 2015. № 6(41). Р. 4-8.

7. Brussler Ya., Nifontova G. O., Bakovski U., Shteinmecer T. Liposomal form of new synthetic thrombin inhibitors // Drug Development & Registration. 2013. № 3(4). Р. 36-46.

8. Water in disperse systems. / B. V. Deryagin, N. V. Churaev, F. D. Ovcharenko. M., Himiya. 1989. 288 р.

9. Gmoshinskii I. V., Hotimchenko S. A., Popov V. O. et al. Nanomaterials and nanotechnologies: methods of analysis and control // Advances in Chemistry. 2013. T. 82. № 1. Р. 48-76.

10. State Pharmacopoeia of the Russian Federation. XIII ed. T. 2 / Ministry of Health of the Russian Federation. M. 2015. 1004 р.

11. Demina N. B. Biopharmacy is the way to create innovative drugs // Drug Development & Registration. 2013. № 1(2). Р. 8-13.

12. Demina N. B., Skatkov S. A. Development Strategies and Biopharmaceutical Aspects of Drug Delivery Systems // Russian Chemical Journal. (J. Ros. Him. Ob-va im. D.I. Mendeleeva). 2012. T. LVI. № 3(4). Р. 5-10.

13. Dzeta-potencial. 2017. Available at: http://www.malvern.com/ru/products/measurement-type/zeta-potential (accessed 10.12.17).

14. Dmitrieva M. V., Oborotova N. A., Orlova O. L. et al. Liposomal dosage form of borchlorin // Russian Biotherapeutic Journal. 2014. T. 13. № 1. Р. 31-36.

15. Dmitrieva M. V., Polozkova A. P., Orlova O. L. et al. Development of the technology of lyophilization of liposomal borchlorin // Biopharmaceutical Journal. 2017. T. 9. № 1. P. 32-37.

16. Kisyakova M. A., Gavrilyuk A. F., Voronkova O. S. et al. Liposomes: structure, properties, ways of introduction into an organism with therapeutic purposes // Bulletin of Dnepropetrovsk University. Biology, ecology. 2010. № 1. Р. 52-57.

17. Koroleva M. Yu., Yurtov E. V. Nanoemulsions: properties, methods of production and promising fields of application // Advances in Chemistry. 2012. T. 81. № 1. Р. 21-43.

18. Krasnyuk I. I. (ml.), Ovsyannikova L. V. Stepanova O. I. et al. The use of solid dispersions with nonsteroidal anti-inflammatory agents in pharmacy // Drug Development & Registration. 2016. № 2 (15). P. 40-44.

19. Kuzyakova L.V. Construction of transdermal liposomal preparations with given properties // Bulletin of Moscow University, ser. 2. Chemistry. 2005. T. 46. № 1. Р. 74-79.

20. Leparskaya N. L., Sorokoumova G. M., Sicheva Yu. V. et al. Liposomes containing dexamethasone: production, characterization and use in ophthalmology. // Vestnik MITHT. 2011. T. 6. № 2. P. 37-42.

21. Limanskaya L. A., Yudincev A. V., Kucenko O. K. et al. Multifunctional liposomal nanosystems for delivery of new antitumor drugs based on europium chelates // Nanosystems, Nanomaterials, Nanotechnologies. 2010. T. 8. № 4. P. 764-774.

22. Malinovskaya Yu. A., Demina N. B. Liposomal forms of simvastatin development // Drug Development & Registration. 2013. № 5. P. 46-53.

23. Margolina A. A., Ernandes E. I., Zaikina O. E. New Cosmetology. M, 2000. 204 р.

24. Mihailova T. V., Barishnikova M. A., Klimenko O. V. et al. A liposomal form of an antitumor vaccine development // Russian Biotherapeutic Journal. 2011. № 4. P. 61-65.

25. Oncology for practicing doctors: Textbook / ed. S. S. Chistyakov. M., Avtorskaya akademiya, Tovarischestvo nauchnih izdanii KMK, 2009. 632 р.

26. Pasinskii A. G. Colloid chemistry / ed. by acad. V. A. Kargina. 3rd ed. M., izd. «Visshaya shkola», 1968, 232 р.

27. Raikov A. O., Hashem A., Barishnikova M. A. Liposomes for the targeted delivery of antitumor drugs // Russian Biotherapeutic Journal. 2016. T. 15. № 2. P. 90-96.

28. Canarova E. V., Ignateva E. V., Polzkova A. P., Oborotova N. A. Evaluation of the effect of cryoprotectants on the size of Tiossens liposomes. Proceedings of the 10th All-Russian Scientific Conference with International Participation «Domestic Antitumor Preparations» (22-23 March 2011, Moscow) // Russian Biotherapeutic Journal. 2011. T. 10. № 1. P. 54.

29. Smirnova Z. S., Sanarova E. V., Borisova L. M. et al. Antitumor activity of photodynamic therapy with liposomal drug form of thiosens on transplanted tumors of mice // Russian Biotherapeutic Journal. 2011. T. 10. № 4. Р. 55-59.

30. Tarahovskii Yu. S., Ivanickii G. R. Liposomes in gene therapy. Structural polymorphism of lipids and the efficiency of delivery of genetic information // Biochemistry. 1998. T. 63. V. 6. Р. 723-736.

31. Pharmaceutical and biomedical aspects of medicines. V. 1 / Еd. by I. M. Pertseva, I. A. Zupanets. Harkov, izdatelstvo UkrFA, 1999. 461 р.

32. Physical and colloid chemistry. / A. I. Kononskii. Kiev, Visshaya shkola, 1986. 312 р.

33. Shanskaya A. I., Puchkova S. M., Yakovleva T. E. Liposomes is a promising form of drugs // Medicine of extreme situations. 2011. № 3(37). P. 100-104.

34. Brewster М. Е. Cyclodextrins as pharmaceutical solubilizers // Advanced Drug Delivery reviews. 2007. V. 59. P. 645-666.

35. Falcao C. B. Multifunctional liposomes for enhanced anticancer therapy // Pharmaceutical Science Dissertations. 2011. P. 1-98.

36. Kaszuba M., McKnight D., Connah M. T. et al. Measuring sub nanometre sizes dynamic light scattering // J Nanopart Res. 2008. V. 10. P. 823-829.

37. Lee K. S., Chung H. C., Im S. A. et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast canser // Breast Canser Res Treat. 2008. V. 108(2). P. 241-250.

38. Mahmud M., Piwoni A., Filiczak N. et al. Long-circulating curcumin-loaded liposome formulations with high incorporation efficiency, stability and anticancer activity towards pancreatic adenocarcinoma cell lines in vitro // PLosONE. 2016. V. 11(12): е0167787.

39. Matuszak J., Baumgartner J., Zaloga J. et al. Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing // Nanomedicine. 2016. V. 11(6). P. 597-616.

40. Oborotova N., Treshalina E., Bashakova Z. et al. Possible application of the newlipidocytostatic D-152 in different drug formulation // Pharmacevtski vestnic, Ljubljana. 1997. V. 48. P. 278-279.

41. Oerlemans C., Bult W., Bos M. et al. Polimeric micelles in anticancer therapy: targeting, imaging and triggered release // Pharm Res. 2010. V. 27. P. 2569-2589.

42. Ohtake Satoshi, Schebor C., de Pablo J.J. Effects of trehalose on the phase behavior of DPPC-cholesterol unilamellar vesicles // Biochimica et Biophysica Acta. 2006. V. 1758. P. 65-73.

43. Oskuee R. K., Mahmoudi A., Gholami L. et al. Cationic liposomes modified with polyallylamine as a gene carrier: preparation, characterization and transfection efficiency evaluation // Adv- PharmBull. 2016. V. 6(4). P. 515-520.

44. Prüger B., Eppmann P., Donath E., Gimsa J. Measurement of Inherent Particle Properties by Dynamic Light Scattering: Introducing Electrorotational Light Scattering // Biophysical Journal. 1997. V. 72(3). P. 1414-1424.

45. Reiner Zeisig, Kazuhiko Shimada, Sadao Hirota, Dieter Arndt. Effect of sterical stabilization on macrophage uptake in vitro and on thickness of the fixed aqueous layer of liposomes made from alkylphosphocholines // Biochimica et Biophysica Acta. 1996. V. 1285. P. 237-245.

46. Rejman J., Oberle V., Zuhorn I.S., Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin and caveolae-mediated endocytosis // Biochem J. 2004. V. 377(Pt. 1). P. 159-69.

47. Riaz M. Liposomes preparation methods // Pakistan Journal of Pharmaceutical Sciences. 1996. V. 19(1). P. 65-77.

48. Serda R. E., Godin B., Blanco E. et al. Multistage delivery nano-particle systems for therapeutic applications // Biochim Biophys Acta. 2011. V. 1810(3). P. 317-329.

49. Suhaimi S. H., Hasham R., Rosli N. A. Effects of formulation parameters on particle size and polydispersity index of orthosiphon stamineus loaded nanostructured lipid carrier // Journal of advanced research in applied sciences and engineering technology. 2015. V. 1(1). P. 36-39.

50. Takeuchi Ken-ichiro, Ishihara Minoru, Kawaura Chiyo et al. Effect of zeta potential of cationic liposomes containing cationic cholesterol derivatives on gene transfection // FEBS Letters. 1996. V. 397. P. 207-209.

51. Tohler V., Smay J. E., Braem A. et al. Nanoparticle halos: A new colloid stabilization mechanism // PNAS. 2001. V. 98(16). P. 8950-54.

52. Vyas A., Saraf S., Saraf S. Cyclodextrin based novel dtug delivery systems // J Incl Phenom Macrocycl Chem. 2008. V. 62. P. 23-42.

53. Shuibing Y., Chengmei L., Wei L. et al. Preparation and characterization of nanoliposomes entrapping mediumchain fatty acids and vitamin C by lyophilization // Int. J. Mol. Sci. 2013. V. 14. P. 19763-73.


Review

For citations:


Dmitrieva M.V., Timofeeva T.A., Oborotova N.A., Krasnyuk I.I., Stepanova O.I. CHARACTERISTICS AND STABILITY ASSESSMENT OF LIPOSOMAL PREPARATIONS. Drug development & registration. 2018;(3):36-44. (In Russ.)

Views: 3276


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-2066 (Print)
ISSN 2658-5049 (Online)